Study of corrosion resistance of composite material samples for oil equipment
- Authors: Khazin M.L1, Apakashev R.A1
- Affiliations:
- Ural State Mining University
- Issue: Vol 25, No 2 (2025)
- Pages: 115-122
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/geo/article/view/4518
- DOI: https://doi.org/10.15593/2712-8008/2025.2.8
- Cite item
Abstract
The use of instrumental and structural metal matrix materials reinforced with various functional fillers is relevant to increase the corrosion resistance and operational reliability of oil and gas field equipment. A study of the corrosion resistance of a number of aluminum matrix dispersion-reinforced composites containing up to 10% (wt.) chromium carbide and magnesium was carried out. Experimental samples of composite materials were synthesized by powder metallurgy by sintering compacted starting materials in an alundum crucible under a coal powder at a temperature of 640 °C for 1 hour. The phase composition of the resulting composites was studied on an XRD 7000 X-ray diffractometer (Shimadzu) with an attachment for X-ray spectral microanalysis. Photographs of the microstructure and distribution maps of chemical elements were obtained using a VEGA LMS scanning electron microscope. To measure the hardness of the composites, an ITV-30-AMV hardness tester was used. Corrosion tests were carried out at room temperature for 504 hours. The corrosive medium was a model electrolyte solution without forced circulation, containing 30 g/l sodium chloride and the addition of acetic acid to pH = 4.0. It has been established that the corrosion rate (P, mm/year) of the samples decreases almost twofold in proportion to the increase in the content of chromium carbide in the matrix aluminum. Additional alloying of composites with magnesium increases the corrosion rate relative to pure aluminum in proportion to the increase in magnesium content. A continuous uniform distribution of corrosion damage to the metal surface of the samples and a decrease in their hardness after corrosion resistance tests are observed in all cases. The research results indicate increased corrosion resistance of the Al-Cr3C2 composite, which is important for its applications as part of equipment operated in a corrosive environment.
Full Text
8About the authors
M. L Khazin
Ural State Mining University
R. A Apakashev
Ural State Mining University
References
- Болотова, Ю.В. Коррозия теплообменного оборудования нефтехимических производств / Ю.В. Болотова, О.И. Ручкинова // Вестник Пермского национального исследовательского политехнического университета. – 2015. – Т. 17, № 4. – С. 102–119. doi: 10.15593/2224-9877/2015.4.08
- Поварова, Л.В. Анализ современных методов защиты нефтепромыслового оборудования от коррозии / Л.В. Поварова, В.С. Мунтян, А.С. Скиба // Булатовские чтения. – 2020. – Т. 4. – С. 125–129.
- Corrosion Strategy in Oil Field System / I.A. Abdalsamed, I.A. Amar, F.A. Altohami, F.A. Salih, M.S. Mazek, M.A. Ali, A.A. Sharif // Journal of Chemical Reviews. – 2020. – Vol. 2, no. 1. – P. 28–39. doi: 10.33945/SAMI/JCR.2020.1.2
- Kulkarni, S.J. An Insight into Studies and Research on Corrosion in Petroleum Industries and Refineries / S.J. Kulkarni // International Journal of Petroleum and Petrochemical Engineering (IJPPE). – 2016. – Vol. 2, no. 2. – P. 1–3. doi: 10.20431/2454-7980.0202001
- Vakili, M. Addressing Hydrogen Sulfide Corrosion in Oil and Gas Industries: A Sustainable Perspective / M. Vakili, P. Koutník, J. Kohout // Sustainability. – 2024. – Vol. 16, no. 4. – P. 1661. doi: 10.3390/su16041661
- Key parameters affecting sweet and sour corrosion: Impact on corrosion risk assessment and inhibition / I.B. Obot, A.A. Sorour, C. Verma, T.A. Al-Khaldi, A.S. Rushaid // Eng. Fail. Anal. – 2023. – Vol. 145. – P. 107008. doi: 10.1016/j.engfailanal.2022.107008
- Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview / J. Akpan, O.S.I. Fayomi, I.G. Akande, S. Odigie // Journal of Physics: Conference Series. – 2019. – No. 1378. – P. 022037. doi: 10.1088/1742-6596/1378/2/022037
- Solovyeva, V.A. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review / V.A. Solovyeva, K.H. Almuhammadi, W.O. Badeghaish // Materials. – 2023. – Vol. 16, no. 5. – P. 1795. doi: 10.3390/ma16051795
- Mapping the knowledge domains of research on corrosion of petrochemical equipment: An informetrics analysis-based study / Z. Lang, D. Wang, H. Liu, X. Gou // Engineering Failure Analysis. – 2021. – Vol. 129. – P. 105716. doi: 10.1016/J.ENGFAILANAL.2021.105716
- Corrosive Environment Assessment and Corrosion-Induced Rockbolt Failure Analysis in a Costal Underground Mine / Q. Guo, J. Pan, M. Wang, M. Cai, X. Xi1 // International Journal of Corrosion. – 2021. – Vol. 2019. – P. 9. doi: 10.1155/2019/2105842
- Анализ трендов перспективных материалов для нефтегазовой отрасли. PROНЕФТЬ / В.В. Жуков, А.А. Карпов, И.А. Карпов, Е.М. Кокцинская, Р.Р. Хусаинов // Профессионально о нефти. – 2022. – Т. 7, № 3. – С. 136–147. doi: 10.51890/2587-7399-2022-7-3-136-147
- Al-Moubaraki, A.H. Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook / A.H. Al-Moubaraki, I.B. Obot // Journal of Saudi Chemical Society. – 2021. – Vol. 25, no. 12. – P. 101370. doi: 10.1016/J.JSCS.2021.101370
- Kadhim, M.G. A Critical Review on Corrosion and its Prevention in the Oilfield Equipment / M.G. Kadhim, M.T. Ali // Journal of Petroleum Research and Studies. – 2021. – Vol. 7, no. 2. – P. 162–189. doi: 10.52716/JPRS.V7I2.195
- Выбойщик, М.А. Научные основы разработки и методология создания сталей для производства нефтепромысловых труб повышенной прочности и коррозионной стойкости / М.А. Выбойщик, А.В. Иоффе // Вектор науки Тольяттинского государственного университета. – 2019. – № 1 (47). – С. 13–20. doi: 10.18323/2073-5073-2019-1-13-20
- Fayomi, O.S.I. Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview / O.S.I. Fayomi, I.G. Akande, S. Odigie // Journal of Physics: Conference Series. – 2019. – Vol. 1378. – P. 022037. doi: 10.1088/1742-6596/1378/2/022037
- Downhole corrosion inhibitors for oil and gas production - a review / M. Askari, M. Aliofkhazraei, R. Jafari, P. Hamghalam, A. Hajizadeh // Applied Surface Science Advances. – 2021. – Vol. 6. – P. 100128. doi: 10.1016/j.apsadv.2021.100128
- Бикмухаметов М.В. Композиционные материалы как двигатель прогресса / М.В. Бикмухаметов, Д.С. Житников // Интернаука. – 2020. – № 45–2 (174). – С. 19–20.
- Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties / P. Samal, P.R. Vundavilli, A. Meher, M.M. Mahapatra // Journal of Manufacturing Processes. – 2020. – Vol. 59. – P. 131–152. doi: 10.1016/j.jmapro.2020.09.010
- Akinwamide, S.O. Microstructural evolution, mechanical and nanoindentation studies of stir cast binary and ternary aluminium based composites / S.O. Akinwamide, O.J. Akinribide, P.A. Olubambi // J. Alloys Compd. – 2021. – Vol. 850. – P. 156586. doi: 10.1016/j.jallcom.2020.156586
- Глобальный рынок композитов в нефтегазовой отрасли идентификатор отчета SI2411 [Электронный ресурс]. – 2023. – 200 с. – URL: https: //www.sphericalinsights.com/reports/composites-in-oil-gas-industry-market/ (07.09.2024).
- Abdulrahman, J. Biopolymer Composite Materials in Oil and Gas Sector / J. Abdulrahman, W.S. Ebhota, P.Y. Tabakov // International Journal of Polymer Science. – 2024. - Vol. 2024, art. ID 8584879. – P. 18. doi: 10.1155/2024/8584879
- Использование композитных материалов в нефтегазовой отрасли / А.В. Исанова, А.А. Долгих, С.А. Петров, Р.А. Задвицкий // Градостроительство. Инфраструктура. Коммуникации. – 2020. – № 2 (19). – С. 39–44.
- Ненахов, А.И. Возможности применения композитных материалов в области энергетики для нефтепроводов и продуктопроводов / А.И. Ненахов, Е.В. Сергеенкова // Энергетическая политика. – 2022. – № 10 (176). – С. 54–65. doi: 10.46920/2409-5516.2022_10176.54
- Corrosion Resistance of Al-CNT Metal Matrix Composites / V.V. Popov, A. Pismenny, N. Larianovsky, A. Lapteva, D. Safranchik // Materials. – 2021. – Vol. 14. – P. 3530–3542. doi: 10.3390/ma14133530
- Microstructure and Corrosion Performance of Aluminium Matrix Composites Reinforced with Refractory High-Entropy Alloy Particulates / E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis // Appl. Sci. – 2021. – Vol. 11. – P. 1300. doi: 10.3390/app11031300
- Fabrication and Corrosion Behaviour of Aluminium Metal Matrix Composites – A Review / R.A. Kumar, S.J. Akash, S. Arunkumar, V. Balaji, M. Balamurugan, A.J. Kumar // IOP Conf. Series: Materials Science and Engineering. – 2020. – Vol. 923. – P. 012056. doi: 10.1088/1757- 899X/923/1/012056
- Карпухин, С.Д. Комплекс свойств композиционных материалов, применяемых в нефтегазовой промышленности / С.Д. Карпухин, О.И. Манаев, С.А. Пахомова // Булатовские чтения. – 2020. – Т. 6. – С. 124–129.
- Nanjan, S. Analysing the Mechanical Properties and Corrosion Phenomenon of Reinforced Metal Matrix Composite / S. Nanjan, J.G. Murali // Mat. Res. – 2020. – Vol. 23, no. 2. – P. e20190681. doi: 10.1590/1980-5373-MR-2019-0681
- Kar, A. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites / A. Kar, A. Sharma, S. Kumar // Crystals. – 2024. – No. 14. – P. 412. doi: 10.3390/cryst14050412
- Tensile Properties of Aluminum Matrix Composites Produced via a Nitrogen-Induced Self-Forming Process / K.-B. Lee, K.C. Nayak, C.-H. Shim, H.-I. Lee, S.-H. Kim, H.-J. Choi, J.-P. Ahn // J. Compos. Sci. – 2023. – No. 7. – P. 457. doi: 10.3390/jcs7110457
- Хазин, М.Л. Новые материалы для деталей горных машин / М.Л. Хазин, Р.А. Апакашев // Горный информационно-аналитический бюллетень. – 2023. – № 12–1. – С. 149–163. doi: 10.25018/0236_1493_2023_121_0_149
- Апакашев, Р.А. Влияние параметров структуры материала на коррозионную стойкость нефтегазопромыслового оборудования / Р.А. Апакашев, М.Л. Хазин // Недропользование. – 2023. – Т. 23, № 3. – С.133–140. doi: 10.15593/2712-8008/2023.3.4
- Akinwamide, S.O. Microstructural evolution, mechanical and nanoindentation studies of stir cast binary and ternary aluminium based composites / S.O. Akinwamide, O.J. Akinribide, P.A. Olubambi // J. Alloys Compd. – 2021. – Vol. 850. – P. 156586. doi: 10.1016/j.jallcom.2020.156586
- Berlanga-Labari, C. Corrosion of Cast Aluminum Alloys: A Review / C. Berlanga-Labari, M.V. Biezma-Moraleda, P.J. Rivero // Metals. – 2020. – Vol. 10, no. 10. – P. 1384. doi: 10.3390/met10101384C
- Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure / J. Esquivel, H.A. Murdoch, K.A. Darling, R.K. Gupta // Materials Research Letters. – 2018. – Vol. 6, no. 1 – P. 79–83. doi: 10.1080/21663831.2017.1396262
- Corrosion behavior of aluminum alloy in sulfur-associated petrochemical equipment H2S environment / X. Cao, Y. Lu, Z. Wang, H. Wei, L. Fan, R. Yang, W. Guo // Chemical Engineering Communications. – 2023. – Vol. 210, no. 2. – P. 233–246. doi: 10.1080/00986445.2022.2030729
- Синявский, В.С. Коррозия и защита алюминиевых сплавов / В.С. Синявский, В.Д. Вальков, В.Д. Калинин. – М.: Металлургия, 1979. – 224 с.
- Controlled optimization of Mg and Zn in Al alloys for improved corrosion resistance via uniform corrosion / J. Lim, G. Jeong, K. Seo [et al.] // Mater. Adv. – 2022. – Vol. 3. – P. 4813–4823. doi: 10.1039/D1MA01220G
- Corrosion behavior and mechanism of Al–Zn–Mg–Cu alloy based on the characterization of the secondary phases / L. Jiang, Z. Zhang, H. Fu, S. Huang, D. Zhuang, J. Xie // Materials Characterization. – 2022. – Vol. 189. – P. 111974. doi: 10.1016/j.matchar.2022.111974
- Microstructure and Corrosion Performance of Aluminium Matrix Composites Reinforced with Refractory High-Entropy Alloy Particulates / E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis // Appl. Sci. – 2021. – Vol. 11. – P. 1300–1312. doi: 10.3390/app11031300
- Corrosion Properties in Sodium Chloride Solutions of Al–TiC Composites in situ Synthesized by HFIHF / E-S.M. Sherif, H.S. Abdo, K.A. Khalil, A.M. Nabawy // Metals. – 2015. – Vol. 5. – P. 1799–1811. doi: 10.3390/met5041799
- Corrosion Behavior of Al Modified with Zn in Chloride Solution / J.P. Calderón, J.L.R. Barragán, J.I.B. Fierro [et al.] // Materials (Basel). – 2022. – Vol. 15, no. 12. – P. 4229–4248. doi: 10.3390/ma15124229
- Kaewmaneekul, T. Effect of aluminium on the passivation of zinc–aluminium alloys in artificial seawater at 80 °C / T. Kaewmaneekul, G. Lothongkum // Corros. Sci. – 2013. – Vol. 66. – P. 67–77. doi: 10.1016/j.corsci.2012.09.004
- El-Hadad, S. Effects of Alloying with Sn and Mg on the Microstructure and Electrochemical Behavior of Cast Aluminum Sacrificial Anodes / S. El-Hadad, M.E. Moussa, M. Waly // Inter Metalcast. – 2021. – Vol. 15. – P. 548–565. doi: 10.1007/s40962-020-00483-6
- Corrosion characterization of Cu-based alloy in different environment / R. Soenoko, P.H. Setyarini, S. Hidayatullah, M.S. Ma’arif, F. Gapsari // Metalurgija. – 2020. – Vol. 59, no. 3. – P. 373–376.
- Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment / T. Jin, W. Zhang, N. Li, X. Liu, L. Han, W. Dai // Materials. – 2019. – Vol. 12. – P. 1869–1884. doi: 10.3390/ma12111869
- Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure / J. Esquivel, H.A. Murdoch, K.A. Darling, R.K. Gupta // Materials Research Letters. – 2018. – Vol. 6, no. 1. – P. 79–83. doi: 10.1080/21663831.2017.1396262
Statistics
Views
Abstract - 12
PDF (Russian) - 6
PDF (English) - 6
Refbacks
- There are currently no refbacks.