Study of corrosion resistance of composite material samples for oil equipment

Abstract


The use of instrumental and structural metal matrix materials reinforced with various functional fillers is relevant to increase the corrosion resistance and operational reliability of oil and gas field equipment. A study of the corrosion resistance of a number of aluminum matrix dispersion-reinforced composites containing up to 10% (wt.) chromium carbide and magnesium was carried out. Experimental samples of composite materials were synthesized by powder metallurgy by sintering compacted starting materials in an alundum crucible under a coal powder at a temperature of 640 °C for 1 hour. The phase composition of the resulting composites was studied on an XRD 7000 X-ray diffractometer (Shimadzu) with an attachment for X-ray spectral microanalysis. Photographs of the microstructure and distribution maps of chemical elements were obtained using a VEGA LMS scanning electron microscope. To measure the hardness of the composites, an ITV-30-AMV hardness tester was used. Corrosion tests were carried out at room temperature for 504 hours. The corrosive medium was a model electrolyte solution without forced circulation, containing 30 g/l sodium chloride and the addition of acetic acid to pH = 4.0. It has been established that the corrosion rate (P, mm/year) of the samples decreases almost twofold in proportion to the increase in the content of chromium carbide in the matrix aluminum. Additional alloying of composites with magnesium increases the corrosion rate relative to pure aluminum in proportion to the increase in magnesium content. A continuous uniform distribution of corrosion damage to the metal surface of the samples and a decrease in their hardness after corrosion resistance tests are observed in all cases. The research results indicate increased corrosion resistance of the Al-Cr3C2 composite, which is important for its applications as part of equipment operated in a corrosive environment.

Full Text

8

About the authors

M. L Khazin

Ural State Mining University

R. A Apakashev

Ural State Mining University

References

  1. Болотова, Ю.В. Коррозия теплообменного оборудования нефтехимических производств / Ю.В. Болотова, О.И. Ручкинова // Вестник Пермского национального исследовательского политехнического университета. – 2015. – Т. 17, № 4. – С. 102–119. doi: 10.15593/2224-9877/2015.4.08
  2. Поварова, Л.В. Анализ современных методов защиты нефтепромыслового оборудования от коррозии / Л.В. Поварова, В.С. Мунтян, А.С. Скиба // Булатовские чтения. – 2020. – Т. 4. – С. 125–129.
  3. Corrosion Strategy in Oil Field System / I.A. Abdalsamed, I.A. Amar, F.A. Altohami, F.A. Salih, M.S. Mazek, M.A. Ali, A.A. Sharif // Journal of Chemical Reviews. – 2020. – Vol. 2, no. 1. – P. 28–39. doi: 10.33945/SAMI/JCR.2020.1.2
  4. Kulkarni, S.J. An Insight into Studies and Research on Corrosion in Petroleum Industries and Refineries / S.J. Kulkarni // International Journal of Petroleum and Petrochemical Engineering (IJPPE). – 2016. – Vol. 2, no. 2. – P. 1–3. doi: 10.20431/2454-7980.0202001
  5. Vakili, M. Addressing Hydrogen Sulfide Corrosion in Oil and Gas Industries: A Sustainable Perspective / M. Vakili, P. Koutník, J. Kohout // Sustainability. – 2024. – Vol. 16, no. 4. – P. 1661. doi: 10.3390/su16041661
  6. Key parameters affecting sweet and sour corrosion: Impact on corrosion risk assessment and inhibition / I.B. Obot, A.A. Sorour, C. Verma, T.A. Al-Khaldi, A.S. Rushaid // Eng. Fail. Anal. – 2023. – Vol. 145. – P. 107008. doi: 10.1016/j.engfailanal.2022.107008
  7. Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview / J. Akpan, O.S.I. Fayomi, I.G. Akande, S. Odigie // Journal of Physics: Conference Series. – 2019. – No. 1378. – P. 022037. doi: 10.1088/1742-6596/1378/2/022037
  8. Solovyeva, V.A. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review / V.A. Solovyeva, K.H. Almuhammadi, W.O. Badeghaish // Materials. – 2023. – Vol. 16, no. 5. – P. 1795. doi: 10.3390/ma16051795
  9. Mapping the knowledge domains of research on corrosion of petrochemical equipment: An informetrics analysis-based study / Z. Lang, D. Wang, H. Liu, X. Gou // Engineering Failure Analysis. – 2021. – Vol. 129. – P. 105716. doi: 10.1016/J.ENGFAILANAL.2021.105716
  10. Corrosive Environment Assessment and Corrosion-Induced Rockbolt Failure Analysis in a Costal Underground Mine / Q. Guo, J. Pan, M. Wang, M. Cai, X. Xi1 // International Journal of Corrosion. – 2021. – Vol. 2019. – P. 9. doi: 10.1155/2019/2105842
  11. Анализ трендов перспективных материалов для нефтегазовой отрасли. PROНЕФТЬ / В.В. Жуков, А.А. Карпов, И.А. Карпов, Е.М. Кокцинская, Р.Р. Хусаинов // Профессионально о нефти. – 2022. – Т. 7, № 3. – С. 136–147. doi: 10.51890/2587-7399-2022-7-3-136-147
  12. Al-Moubaraki, A.H. Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook / A.H. Al-Moubaraki, I.B. Obot // Journal of Saudi Chemical Society. – 2021. – Vol. 25, no. 12. – P. 101370. doi: 10.1016/J.JSCS.2021.101370
  13. Kadhim, M.G. A Critical Review on Corrosion and its Prevention in the Oilfield Equipment / M.G. Kadhim, M.T. Ali // Journal of Petroleum Research and Studies. – 2021. – Vol. 7, no. 2. – P. 162–189. doi: 10.52716/JPRS.V7I2.195
  14. Выбойщик, М.А. Научные основы разработки и методология создания сталей для производства нефтепромысловых труб повышенной прочности и коррозионной стойкости / М.А. Выбойщик, А.В. Иоффе // Вектор науки Тольяттинского государственного университета. – 2019. – № 1 (47). – С. 13–20. doi: 10.18323/2073-5073-2019-1-13-20
  15. Fayomi, O.S.I. Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview / O.S.I. Fayomi, I.G. Akande, S. Odigie // Journal of Physics: Conference Series. – 2019. – Vol. 1378. – P. 022037. doi: 10.1088/1742-6596/1378/2/022037
  16. Downhole corrosion inhibitors for oil and gas production - a review / M. Askari, M. Aliofkhazraei, R. Jafari, P. Hamghalam, A. Hajizadeh // Applied Surface Science Advances. – 2021. – Vol. 6. – P. 100128. doi: 10.1016/j.apsadv.2021.100128
  17. Бикмухаметов М.В. Композиционные материалы как двигатель прогресса / М.В. Бикмухаметов, Д.С. Житников // Интернаука. – 2020. – № 45–2 (174). – С. 19–20.
  18. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties / P. Samal, P.R. Vundavilli, A. Meher, M.M. Mahapatra // Journal of Manufacturing Processes. – 2020. – Vol. 59. – P. 131–152. doi: 10.1016/j.jmapro.2020.09.010
  19. Akinwamide, S.O. Microstructural evolution, mechanical and nanoindentation studies of stir cast binary and ternary aluminium based composites / S.O. Akinwamide, O.J. Akinribide, P.A. Olubambi // J. Alloys Compd. – 2021. – Vol. 850. – P. 156586. doi: 10.1016/j.jallcom.2020.156586
  20. Глобальный рынок композитов в нефтегазовой отрасли идентификатор отчета SI2411 [Электронный ресурс]. – 2023. – 200 с. – URL: https: //www.sphericalinsights.com/reports/composites-in-oil-gas-industry-market/ (07.09.2024).
  21. Abdulrahman, J. Biopolymer Composite Materials in Oil and Gas Sector / J. Abdulrahman, W.S. Ebhota, P.Y. Tabakov // International Journal of Polymer Science. – 2024. - Vol. 2024, art. ID 8584879. – P. 18. doi: 10.1155/2024/8584879
  22. Использование композитных материалов в нефтегазовой отрасли / А.В. Исанова, А.А. Долгих, С.А. Петров, Р.А. Задвицкий // Градостроительство. Инфраструктура. Коммуникации. – 2020. – № 2 (19). – С. 39–44.
  23. Ненахов, А.И. Возможности применения композитных материалов в области энергетики для нефтепроводов и продуктопроводов / А.И. Ненахов, Е.В. Сергеенкова // Энергетическая политика. – 2022. – № 10 (176). – С. 54–65. doi: 10.46920/2409-5516.2022_10176.54
  24. Corrosion Resistance of Al-CNT Metal Matrix Composites / V.V. Popov, A. Pismenny, N. Larianovsky, A. Lapteva, D. Safranchik // Materials. – 2021. – Vol. 14. – P. 3530–3542. doi: 10.3390/ma14133530
  25. Microstructure and Corrosion Performance of Aluminium Matrix Composites Reinforced with Refractory High-Entropy Alloy Particulates / E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis // Appl. Sci. – 2021. – Vol. 11. – P. 1300. doi: 10.3390/app11031300
  26. Fabrication and Corrosion Behaviour of Aluminium Metal Matrix Composites – A Review / R.A. Kumar, S.J. Akash, S. Arunkumar, V. Balaji, M. Balamurugan, A.J. Kumar // IOP Conf. Series: Materials Science and Engineering. – 2020. – Vol. 923. – P. 012056. doi: 10.1088/1757- 899X/923/1/012056
  27. Карпухин, С.Д. Комплекс свойств композиционных материалов, применяемых в нефтегазовой промышленности / С.Д. Карпухин, О.И. Манаев, С.А. Пахомова // Булатовские чтения. – 2020. – Т. 6. – С. 124–129.
  28. Nanjan, S. Analysing the Mechanical Properties and Corrosion Phenomenon of Reinforced Metal Matrix Composite / S. Nanjan, J.G. Murali // Mat. Res. – 2020. – Vol. 23, no. 2. – P. e20190681. doi: 10.1590/1980-5373-MR-2019-0681
  29. Kar, A. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites / A. Kar, A. Sharma, S. Kumar // Crystals. – 2024. – No. 14. – P. 412. doi: 10.3390/cryst14050412
  30. Tensile Properties of Aluminum Matrix Composites Produced via a Nitrogen-Induced Self-Forming Process / K.-B. Lee, K.C. Nayak, C.-H. Shim, H.-I. Lee, S.-H. Kim, H.-J. Choi, J.-P. Ahn // J. Compos. Sci. – 2023. – No. 7. – P. 457. doi: 10.3390/jcs7110457
  31. Хазин, М.Л. Новые материалы для деталей горных машин / М.Л. Хазин, Р.А. Апакашев // Горный информационно-аналитический бюллетень. – 2023. – № 12–1. – С. 149–163. doi: 10.25018/0236_1493_2023_121_0_149
  32. Апакашев, Р.А. Влияние параметров структуры материала на коррозионную стойкость нефтегазопромыслового оборудования / Р.А. Апакашев, М.Л. Хазин // Недропользование. – 2023. – Т. 23, № 3. – С.133–140. doi: 10.15593/2712-8008/2023.3.4
  33. Akinwamide, S.O. Microstructural evolution, mechanical and nanoindentation studies of stir cast binary and ternary aluminium based composites / S.O. Akinwamide, O.J. Akinribide, P.A. Olubambi // J. Alloys Compd. – 2021. – Vol. 850. – P. 156586. doi: 10.1016/j.jallcom.2020.156586
  34. Berlanga-Labari, C. Corrosion of Cast Aluminum Alloys: A Review / C. Berlanga-Labari, M.V. Biezma-Moraleda, P.J. Rivero // Metals. – 2020. – Vol. 10, no. 10. – P. 1384. doi: 10.3390/met10101384C
  35. Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure / J. Esquivel, H.A. Murdoch, K.A. Darling, R.K. Gupta // Materials Research Letters. – 2018. – Vol. 6, no. 1 – P. 79–83. doi: 10.1080/21663831.2017.1396262
  36. Corrosion behavior of aluminum alloy in sulfur-associated petrochemical equipment H2S environment / X. Cao, Y. Lu, Z. Wang, H. Wei, L. Fan, R. Yang, W. Guo // Chemical Engineering Communications. – 2023. – Vol. 210, no. 2. – P. 233–246. doi: 10.1080/00986445.2022.2030729
  37. Синявский, В.С. Коррозия и защита алюминиевых сплавов / В.С. Синявский, В.Д. Вальков, В.Д. Калинин. – М.: Металлургия, 1979. – 224 с.
  38. Controlled optimization of Mg and Zn in Al alloys for improved corrosion resistance via uniform corrosion / J. Lim, G. Jeong, K. Seo [et al.] // Mater. Adv. – 2022. – Vol. 3. – P. 4813–4823. doi: 10.1039/D1MA01220G
  39. Corrosion behavior and mechanism of Al–Zn–Mg–Cu alloy based on the characterization of the secondary phases / L. Jiang, Z. Zhang, H. Fu, S. Huang, D. Zhuang, J. Xie // Materials Characterization. – 2022. – Vol. 189. – P. 111974. doi: 10.1016/j.matchar.2022.111974
  40. Microstructure and Corrosion Performance of Aluminium Matrix Composites Reinforced with Refractory High-Entropy Alloy Particulates / E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis // Appl. Sci. – 2021. – Vol. 11. – P. 1300–1312. doi: 10.3390/app11031300
  41. Corrosion Properties in Sodium Chloride Solutions of Al–TiC Composites in situ Synthesized by HFIHF / E-S.M. Sherif, H.S. Abdo, K.A. Khalil, A.M. Nabawy // Metals. – 2015. – Vol. 5. – P. 1799–1811. doi: 10.3390/met5041799
  42. Corrosion Behavior of Al Modified with Zn in Chloride Solution / J.P. Calderón, J.L.R. Barragán, J.I.B. Fierro [et al.] // Materials (Basel). – 2022. – Vol. 15, no. 12. – P. 4229–4248. doi: 10.3390/ma15124229
  43. Kaewmaneekul, T. Effect of aluminium on the passivation of zinc–aluminium alloys in artificial seawater at 80 °C / T. Kaewmaneekul, G. Lothongkum // Corros. Sci. – 2013. – Vol. 66. – P. 67–77. doi: 10.1016/j.corsci.2012.09.004
  44. El-Hadad, S. Effects of Alloying with Sn and Mg on the Microstructure and Electrochemical Behavior of Cast Aluminum Sacrificial Anodes / S. El-Hadad, M.E. Moussa, M. Waly // Inter Metalcast. – 2021. – Vol. 15. – P. 548–565. doi: 10.1007/s40962-020-00483-6
  45. Corrosion characterization of Cu-based alloy in different environment / R. Soenoko, P.H. Setyarini, S. Hidayatullah, M.S. Ma’arif, F. Gapsari // Metalurgija. – 2020. – Vol. 59, no. 3. – P. 373–376.
  46. Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment / T. Jin, W. Zhang, N. Li, X. Liu, L. Han, W. Dai // Materials. – 2019. – Vol. 12. – P. 1869–1884. doi: 10.3390/ma12111869
  47. Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure / J. Esquivel, H.A. Murdoch, K.A. Darling, R.K. Gupta // Materials Research Letters. – 2018. – Vol. 6, no. 1. – P. 79–83. doi: 10.1080/21663831.2017.1396262

Statistics

Views

Abstract - 12

PDF (Russian) - 6

PDF (English) - 6

Refbacks

  • There are currently no refbacks.

Copyright (c) 2025 Khazin M.L., Apakashev R.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies