Integrated Thermodynamic and Kinetic Modeling of Methane Hydrate Formation: Experimental Validation and Predictive Analysis
- Authors: Afranejad A.1, Poplygin V.V1, Poplygina I.S1, Shi X.2
- Affiliations:
- Perm National Research Polytechnic University
- China University of Petroleum
- Issue: Vol 25, No 3 (2025)
- Pages: 257-261
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/geo/article/view/4881
- DOI: https://doi.org/10.15593/2712-8008/2025.3.16
- Cite item
Abstract
Gas hydrate formation presents significant flow assurance challenges in oil and gas operations, particularly in subsea pipelines where low temperatures (< 290 K) and high pressures (>5 MPa) create ideal conditions for crystallization. This study integrates experimental and modeling approaches to characterize methane hydrate phase equilibria, the primary component of natural gas hydrates. Controlled stepwise heating experiments (0.3–1 K/hr) in a high-pressure reactor (50–130 bar range) precisely determined dissociation conditions with temperature uncertainty of ±0.1 K and pressure accuracy of ±0.05 MPa. A novel thermodynamic framework combining the PC-SAFT equation of state for chain molecule interactions, the CPA equation for hydrogen bonding effects, and Van der Waals-Platteeuw hydrate theory demonstrated exceptional predictive capability across the 280–290 K and 5.5–13 MPa operating window. The model's robustness was validated against four independent experimental datasets, achieving average absolute deviations of 1.55% for pressure and 0.05 % for temperature with the CPA approach, outperforming PC-SAFT in high-pressure regimes.The study also investigated kinetic behavior using two experimental methods, with Method B (post-cooling gas injection) providing unambiguous induction time measurements. Results revealed critical insights into hydrate nucleation and dissociation dynamics, including the identification of equilibrium points at the intersection of heating-cooling curves. These findings advance fundamental understanding of hydrate thermodynamics while offering practical tools for pipeline design, operational optimization, and emergency response planning in Arctic and deepwater environments. The developed methodology bridges the gap between laboratory-scale data and field-scale applications, ensuring accurate hydrate stability predictions under industrial conditions.
Full Text
16About the authors
A. Afranejad
Perm National Research Polytechnic University
V. V Poplygin
Perm National Research Polytechnic University
I. S Poplygina
Perm National Research Polytechnic University
Xian Shi
China University of Petroleum
References
- Shahnazar S., Hasan N. Gas hydrate formation condition: Review on experimental and modeling approaches. Fluid Phase Equilibria, 2014, 379, pp. 72-85. doi: 10.1016/j.fluid.2014.07.012
- Li Q., Li Q. Effects of Drilling Mud Properties on Hydrate Dissociation Around Wellbore during Drilling Operation in Hydrate Reservoir. International Journal of Engineering, 2021, 35(1), pp. 142-149. doi: 10.5829/ije.2022.35.01a.13
- Dvoynikov M.V., Nutskova M.V., Blinov P.A. Developments Made in the Field of Drilling Fluids by Saint Petersburg Mining University. International Journal of Engineering, Transactions A: Basics, 2020, 33(4), pp. 702-711. doi: 10.5829/IJE.2020.33.04A.22
- Babaee S., Hashemi H., Mohammadi A.H., Naidoo P., Ramjugernath D. Kinetic study of hydrate formation for argon + TBAB + SDS aqueous solution system. Journal of Chemical Thermodynamics, 2017, 116, pp. 121-129. doi: 10.1016/j.jct.2017.08.030
- Vysniauskas A., Bishnoi P.R. A kinetic study of methane hydrate formation. Chemical Engineering Science, 1983, 38(7), pp. 1061-1072. doi: 10.1016/0009-2509(83)80027-x
- Skovborg P., Rasmussen P. A mass transport limited model for the growth of methane and ethane gas hydrates. Chemical Engineering Science, 1994, 49(8), pp. 1131-1143. doi: 10.1016/0009-2509(94)85085-2
- Lekvam K., Ruoff P. A reaction kinetic mechanism for methane hydrate formation in liquid water. Journal of the American Chemical Society, 1993, 115(19), pp. 8565-8569. doi: 10.1021/ja00072a007
- Jäger A., Vinš V., Gernert J., Span R., Hrubý J. Phase equilibria with hydrate formation in H2O+CO2 mixtures modeled with reference equations of state. Fluid Phase Equilibria, 2012, 338, pp. 100-113. doi: 10.1016/j.fluid.2012.10.0
- Meragawi S.E., Diamantonis N.I., Tsimpanogiannis I.N., Economou I.G. Hydrate - fluid phase equilibria modeling using PC-SAFT and Peng-Robinson equations of state. Fluid Phase Equilibria, 2015, 413, pp. 209-219. doi: 10.1016/j.fluid.2015.12.003
- Amtawong J., Sengupta S., Nguyen M.T., et al. Kinetics of Trifluoromethane Clathrate Hydrate Formation from CHF3 Gas and Ice Particles. Journal of Physical Chemistry A, 2017, 121(38), pp. 7089-7098. doi: 10.1021/acs.jpca.7b08730
- Sloan E.D., Koh C.A. Clathrate Hydrates of Natural Gases, Third ed. CRC Press (Taylor and Francis Group): Boca Raton, FL., 2008. doi: 10.1201/9781420008494
- Pahlavanzadeh H., Kamran-Pirzaman A., Mohammadi A.H. Thermodynamic modeling of pressure-temperature phase diagrams of binary clathrate hydrates of methane, carbon dioxide or nitrogen+tetrahydrofuran, 1,4-dioxane or acetone. Fluid Phase Equilibria, 2012, 320, pp. 32-37. doi: 10.1016/j.fluid.2012.01.010
- Dharmawardhana P.B., Parrish W.R., Sloan E.D. Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Industrial & Engineering Chemistry Fundamentals, 1980, 19(4), pp. 410-414. doi: 10.1021/i160076a015
- Chapman W.G., Gubbins K.E., Jackson G., Radosz M. SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria, 1989, 52, pp. 31-38. doi: 10.1016/0378-3812(89)80308-5
- Gross J., Sadowski G. Application of the Perturbed-Chain SAFT equation of state to associating systems. Industrial & Engineering Chemistry Research, 2002, 41(22), pp. 5510-5515. doi: 10.1021/ie010954d
- Ji X., Held C., Sadowski G. Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components. Fluid Phase Equilibria, 2013, 363, pp. 59-65. doi: 10.1016/j.fluid.2013.11.019
- Cameretti L.F., Sadowski G., Mollerup J.M. Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory. Industrial & Engineering Chemistry Research, 2005, 44(9), pp. 3355-3362. doi: 10.1021/ie0488142
- Gross J., Sadowski G. Perturbed-Chain SAFT: an equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 2001, 40(4), pp. 1244-1260. doi: 10.1021/ie0003887
- Kontogeorgis G.M., Michelsen M.L., Folas G.K., Derawi S., Von Solms N., Stenby E.H. Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems. Industrial & Engineering Chemistry Research, 2006, 45(14), pp. 4855-4868. doi: 10.1021/ie051305v
- Kohn J.P., Kurata F. Heterogeneous phase equilibria of the methane-hydrogen sulfide system. AIChE Journal, 1958, 4(2), pp. 211-217. doi: 10.1002/aic.690040217
- Tsivintzelis I., Kontogeorgis G., Michelsen M.L., Stenby E.H. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H2S. AIChE Journal, 2010, 56(11), pp. 2965-2982. doi: 10.1002/aic.12207
- Seo J., Cho S.-G., Yang G., Sa J.-H. Evaluating Potential Risk of Clathrate Hydrate Formation for the Transport of Hydrogen-Natural Gas Blends through Pipelines. Renewable Energy, 2024, 237, 121753, doi: 10.1016/j.renene.2024.121753
- Makogon Y.F. Natural gas hydrates-A promising source of energy. J. Nat. Gas Sci. Eng., 2010, 2, pp. 49-59. doi: 10.1016/j.jngse.2009.12.004
- Chong Z.R., Yang S.H.B., Babu P., Linga P., Li X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy, 2016, 162, pp. 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
- Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates. Rev. Geophys, 2017, 55, pp. 126-168. doi: 10.1002/2016RG000534
- Waite W.F., Santamarina J.C., Cortes D.D., Dugan B., Espinoza D.N., Germaine J., Jang J., Jung J.W., Kneafsey T.J., Shin H. et al. Physical properties of hydrate-bearing sediments. Rev. Geophys., 2009, 47, RG4003. doi: 10.1029/2008RG000279
- Boswell R., Collett T.S. Current perspectives on gas hydrate resources. Energy Environ. Sci., 2011, 4, pp. 1206-1215. doi: 10.1039/C1EE00203H
- Konno Y., Fujii T., Sato A., Akamine K., Naiki M., Masuda Y., Yamamoto K., Nagao J. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production. Energy Fuels, 2017, 31, pp. 2607-2616. doi: 10.1021/acs.energyfuels.6b03143
- Li X.-S., Xu C.-G., Zhang Y., Ruan X.-K., Li G., Wang Y. Investigation into gas production from natural gas hydrate: A review. Appl. Energy, 2016, 172, pp. 286-322. doi: 10.1016/j.apenergy.2016.03.101
- Moridis G.J., Reagan M.T., Kim S.-J., Seol Y., Zhang K. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea. SPE J., 2013, 18, pp. 424-439. doi: 10.2118/158131-PA
- Rutqvist J., Moridis G.J. Numerical studies on the geomechanical stability of hydrate-bearing sediments. SPE J., 2009, 14, pp. 267-282. doi: 10.2118/126129-PA
- Yamamoto K., Terao Y., Fujii T., Ikawa T., Seki M., Matsuzawa M., Kanno T. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough. Offshore Technol. Conf., 2014. doi: 10.4043/25243-MS
- Yang L., Zhao J., Liu W., Li Y., Yang M., Song Y. Gas recovery from depressurized methane hydrate deposits with different water saturations. Appl. Energy, 2017, 187, pp. 180-188. doi: 10.1016/j.apenergy.2016.11.042
- Sun J., Ning F., Zhang L., Liu T., Peng L., Liu Z., Li C., Jiang G. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study. J. Pet. Sci. Eng., 2018, 170, pp. 345-367. doi: 10.1016/j.petrol.2018.06.075
- Schicks J.M., Spangenberg E., Giese R., Steinhauer B., Klump J., Luzi-Helbing M. The challenge of gas hydrate reservoirs: Latest advances in their exploration and production. Energies, 2020, 13, 584. doi: 10.3390/en13030584
- Lei L., Seol Y., Choi J.-H., Kneafsey T.J. Pore habit of methane hydrate and its evolution in sediment matrix-Laboratory visualization with phase-contrast micro-CT. Mar. Pet. Geol., 2019, 104, pp. 451-467. doi: 10.1016/j.marpetgeo.2019.04.004
- Properties of Gases and Liquids. Industrial combustion series, 2001, pp. 715-724. doi: 10.1201/9781420038699.axb
- Mahmoudjanloo H., Izadpanah A.A., Osfouri S., Mohammadi A.H. Modeling liquid-liquid and vapor-liquid equilibria for the hydrocarbon+N-formylmorpholine system using the CPA equation of state. Chemical Engineering Science, 2013, 98, pp. 152-159. doi: 10.1016/j.ces.2013.04.002
- Hem J.D. Study and Interpretation of the Chemical Characteristics of Natural Water, 1959. doi: 10.3133/wsp1473_ed1
- Nakamura T., Makino T., Sugahara T., Ohgaki K. Stability boundaries of gas hydrates helped by methane-structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chemical Engineering Science, 2002, 58(2), pp. 269-273. doi: 10.1016/s0009-2509(02)00518-3
- Jhaveri J., Robinson D.B. Hydrates in the methane nitrogen system. Canadian Journal of Chemical Engineering, 1965, 43(2), pp. 75-78. doi: 10.1002/cjce.5450430207
- De Roo J.L., Peters C.J., Lichtenthaler R.N., Diepen G.A.M. Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure. AIChE Journal. 1983, 29(4), pp. 651-657. doi: 10.1002/aic.690290420
- Liu X., Jiang R., Li J., Huang W. Characteristics of Shale Gas Reservoir in Jiyang Depression and its Significance in Drilling and Exploitation. International Journal of Engineering, Transactions B: Applications, 2020, 33(8), pp. 1677-1686. doi: 10.5829/IJE.2020.33.08B.27
- Poplygin V.V., Pavlovskaia E.E. Investigation of the Influence of Pressures and Proppant Mass on the Well Parameters after Hydraulic Fracturing. International Journal of Engineering, Transactions A: Basics, 2021, 34(4), pp. 1066-1073. doi: 10.5829/IJE.2021.34.04A.33
- Leusheva E., Morenov V., Tabatabaee Moradi S. Effect of Carbonate Additives on Dynamic Filtration Index of Drilling Mud. International Journal of Engineering, Transactions B: Applications, 2020, 33(5), pp. 934-939. doi: 10.5829/IJE.2020.33.05B.26
Statistics
Views
Abstract - 2
PDF (Russian) - 0
Refbacks
- There are currently no refbacks.
