Обоснование зональной нефтегазоносности территории Висимской моноклинали по геохимическим критериям

Аннотация


В статье выполняется зональная вероятностно-статистическая оценка генерационного потенциала отложений, формирующих нефтегазоносность территории Висимской моноклинали. Использованы базы данных по геохимическим и битуминологическим характеристикам рассеянного органического вещества (РОВ) в отложениях доманикоидного типа верхнедевонско-турнейской толщи. Были использованы следующие показатели: содержание органического углерода Сорг, %; органического вещества ОВ, %; состав РОВ (содержание битумоидов, %: - хлороформенных - Бхл, петролейных - Бпэ, спиртобензольных - Бсб, гуминовых кислот - ГумК, нерастворимого остатка - НО, %) и характеристики преобразования РОВ (отношение концентраций хлороформенного битумоида к спиртобензольному - Бхл/Бсб, битумоидный коэффициент - β), а также коэффициент пересчета для Сорг - Кк. Для определения информативности этих характеристик использованы статистические критерии Стьюдента ( t ) и Пирсона (c2). При построении моделей прогноза зональной нефтегазоносности территории Висимской моноклинали использовались одномерный и пошаговый многомерный регрессионный анализы, что позволило построить одномерные и многомерные регрессионные линейные модели. С помощью пошагового многомерного регрессионного анализа разработан комплексный критерий, учитывающий влияние как каждого геохимического показателя в отдельности, так и их сочетаний. Это позволило построить схему распределения вероятности нефтегазоносности для территории Висимской моноклинали, анализ которой показал, что максимально благоприятные геохимические условия формирования нефтегазоносности за счет РОВ наблюдаются в центральной части Висимской моноклинали (в пределах Майкорского месторождения и территории вокруг него, ограниченной изовероятностью больше 0,5). Также определенный интерес с точки зрения зональной нефтегазоносности представляют участки на юге Висимской моноклинали на территориях, где > 0,5. Вероятно, определенный интерес имеют территории и на севере Висимской моноклинали.


Полный текст

Введение Существующие стандартные методики оценки нефтегазоносности не всегда позволяют выделить те локальные объекты, которые будут содержать скопления нефти. Многие авторы для зонального прогноза нефтегазоносности предлагают использовать различные количественные или качественные критерии. В данной статье выполняется зональная вероятностно-статистическая оценка генерационного потенциала отложений, формирующих нефтегазоносность осадочного разреза территории развития Висимской моноклинали. Здесь, как и на территории всего Пермского края, традиционными нефтегазоматеринскими толщами являются отложения верхнедевонско-турнейского карбонатного (D3-C1t) комплекса [1-12]. Для решения данной задачи использованы базы данных по геохимическим и битуминологическим характеристикам рассеянного органического вещества (РОВ) верхнедевонско-турнейских карбонатных отложений, определенных в скважинах на территории Висимской моноклинали. В работе были использованы следующие показатели: содержание органических соединений в породе (органического углерода Сорг, %, и органического вещества ОВ, %); состав РОВ (содержание битумоидов, % - хлороформенных - Бхл, петролейных - Бпэ, спиртобензольных битумоидов - Бсб, гуминовых кислот - ГумК, нерастворимого остатка - НО) и характеристики преобразования РОВ (отношение концентраций хлороформенного битумоида к спиртобензольному - Бхл/Бсб, битумоидный коэффициент - β), а также коэффициент пересчета для Сорг - Кк. Статистический анализ проведен по 325 определениям геохимических характеристик по керну. Нефтегазоматеринские толщи в разрезе верхнедевонско-турнейского нефтегазового комплекса являются отложениями доманикоидного типа, с которыми в настоящее время связывают формирование основного объема залежей нефти и газа во всем осадочном чехле северо-восточной части Волго-Уральской нефтегазоносной провинции, куда входит территория Висимской моноклинали. Ранее в работах различных авторов были рассмотрены геохимические особенности каждого стратиграфического подразделения этих отложений, выявлена их генерирующая роль и выполнены исследования по прогнозированию нефтегазоносности. Геолого-геохимические особенности этих отложений были изучены авторами достаточно подробно для всей территории Пермского края [1-8]. Здесь необходимо отметить, что в данных работах особенностям распределения РОВ по территории Висимской моноклинали уделено мало внимания. Это связано во многом с тем, что на данной территории к настоящему времени открыто мало месторождений нефти и газа, при этом в достаточно ограниченном стратиграфическом диапазоне. По мнению авторов данной статьи, привлечение математических методов позволит оценить связи между характеристиками РОВ и нефтегазоносности территории Висимской моноклинали. Возможности построения геолого-математических моделей для решения различных задач приведены в работах [13-38]. При построении одномерных и многомерных линейных статистических моделей использовались элементы математической статистики и теории вероятностей, которые детально описаны в работах как отечественных, так и зарубежных авторов [1, 11, 20, 27, 29, 30, 39-46]. Построение одномерных моделей Проводился анализ результатов исследований образцов из скважин, которые находятся в пределах границ Висимской моноклинали и в непосредственной близости к ним. Первоначально показатели, характеризующие РОВ по изучаемым отложениям, были условно разграничены на две группы. К первой отнесены определения РОВ по скважинам, находящимся вблизи месторождений и непосредственно в их контурах, ко второй - определения из скважин, находящихся за пределами нефтяных месторождений. Первым статистическим инструментом для оценки степени различия параметров для двух выборок является проверка гипотез о различиях или неразличиях средних значений рассматриваемых характеристик РОВ при помощи t-критерия Стьюдента: , где Х1, Х2 - соответственно средние значения показателей РОВ для нефтяных и «пустых» площадей; - дисперсии показателей. Различие в средних значениях считается статистически значимым, если tp > tt. Значения tt определяются в зависимости от количества сравниваемых данных и уровня значимости (α = 0,05). Данные статистических расчетов средних значений (t-критерия и достигаемого уровня значимости р) геохимических и битуминологических параметров в группах для отложений доманикового типа верхнедевонско-турнейских отложений (D3-С1) приведены в табл. 1. Статистическая значимость различий средних величин геохимических и битуминологических характеристик РОВ верхнедевонско-турнейской толщи установлена для трех показателей: Кк, Бпэ, Бсб. Максимальное статистическое различие по критерию t получено для Бсб, минимальное - ОВ. Чтобы оценить возможности формирования нефтегазоносности Висимской моноклинали по характеристикам РОВ верхнедевонско-турнейской толщи, для них были построены индивидуальные модели прогноза с целью оценки нефтегазоносности. Методика построения таких моделей достаточно подробно изложена в работе [1]. Рассмотрим построение индивидуальных вероятностных моделей. Таблица 1 Сравнение средних значений геохимических и битуминологических характеристик и индивидуальные вероятностные модели нефтегазоносности для отложений доманикового типа D3-С1 Показатель Статистические характеристики показателей Критерий Стьюдента Верхняя строка - уравнение вероятности принадлежности к классу территорий в пределах контуров месторождений; средняя - область применения модели; нижняя - диапазон изменения вероятности территория контуров месторождений (группа 1) территория за контурами месторождений (группа 2) (в контуре n = 95, за контуром n = 142) НО, % 47,4 ± 42,4 0,501 ± 0,002 53,5 ± 42,0 0,499 ± 0,001 -1,21853 0,22424 Р(НО) = 0,502-0,0005 НО 0,35-99,75 % 0,497-0,502 Сорг, % 0,64 ± 1,23 0,501 ± 0,003 0,44 ± 0,62 0,499 ± 0,002 0,61471 0,53933 Р(Сорг) = 0,499 + 0,00425 Сорг 0,02-24,33 % 0,499-0,602 ОВ, % 0,81 ± 1,54 0,501 ± 0,003 0,57 ± 0,86 0,499 ± 0,003 0,54493 0,58631 Р(ОВ) = 0,499 + 0,00321 ОВ 0,03-32,36 % 0,499-0,603 Бпэ, % 0,006 ± 0,018 0,511 ± 0,072 0,0003 ± 0,01 0,489 ± 0,072 3,49030 0,00054 Р(Бпэ) = 0,488 + 3,9047 Бпэ 0,000-0,08 % 0,488-0,800 Бхл, % 0,056 ± 0,258 0,504 ± 0,038 0,021 ± 0,030 0,496 ± 0,004 1,61845 0,10690 Р(Бхл) = 0,495 + 0,15082 Бхл 0,000-2,5 % 0,495-0,872 Бсб, % 0,064 ± 0,086 0,504 ± 0,021 0,033 ± 0,011 0,497 ± 0,010 3,65523 0,00031 Р(Бсб) = 0,488 + 0,24752 Бсб 0,000-0,940 % 0,489-0,723 ГумК, % 0,003 ± 0,010 0,500 ± 0,005 0,004 ± 0,057 0,500 ± 0,006 -0,77114 0,48314 Р(ГумК) = 0,501-0,4559 ГумК 0,00-0,08 % 0,464-0,501 Бхл/Бсб, отн. ед. 1,63 ± 3,54 0,503 ± 0,020 0,78 ± 1,39 0,498 ± 0,008 1,76051 0,07962 Р(Бхл/Бсб) = 0,495 + 0,00572 Бхл/Бсб 0,00-20,8 % 0,495-0,613 β, % 10,47 ± 14,54 0,501 ± 0,001 7,21 ± 14,82 0,499 ± 0,010 0,62548 0,53226 Р(β) = 0,496 + 0,0092 β 0,05-88,88 % 0,496-0,577 Кк, отн. ед. 1,27 ± 0,04 0,516 ± 0,085 1,29 ± 0,041 0,483 ± 0,090 2,87379 0,00581 Р(Кк) = 3,399-2,259 Кк 1,25-1,33 отн. ед. 0,394-0,575 Примечание: * - в числителе - средние значения показателя и стандартное отклонение в классе, в знаменателе - среднее значение вероятности и стандартное отклонение в классе. Таблица 2 Распределение значений Бхл/Бсб по отложениям доманикового типа Класс объектов Интервал варьирования Бхл/Бсб, доли ед. 0,0-2,0 2,0-4,0 4,0-6,0 6,0-8,0 8,0-10,0 10,0-12,0 12,0-14,0 14,0-16,0 Более 16,0 Территории в пределах контуров месторождений (n = 95) 0,886 - 0,031 0,010 - 0,010 0,021 0,021 0,021 Территории за пределами контуров месторождений (n = 142) 0,922 0,036 0,021 0,007 0,007 0,007 - - - В качестве примера выполним статистический анализ по показателю Бхл/Бсб для проб, отобранных в пределах контуров месторождений и за их пределами. Сравнение средних значений, приведенных в табл. 1, показывает, что среднее значение для территорий в пределах контуров месторождений - 1,634, для территорий за пределами контуров месторождений - 0,782. По критерию t средние значения не являются различными, так как р = 0,07962. Распределения значений Бхл/Бсб по доманиковым отложениям приведено в табл. 2. Отсюда видно, что распределения значений Бхл/Бсб для территорий нефтяных месторождений и за их пределами значительно отличаются. Для территорий нефтяных месторождений значения Бхл/Бсб в интервале 0,0-4,0 доли ед. встречаются с частостью 0,886, тогда как для территорий за пределами - 0,956. В интервале 2,0-10,0 в первом случае 0,041, во втором - 0,042, т.е. наблюдается практическое равенство значений частостей. При Бхл/Бсб > 12,0 для территорий нефтяных месторождений частость равна 0,063, за пределами нефтяных месторождений такие высокие значения не встречаются. Выполненная оценка различия по критерию c2 показала, что распределения являются статистически различными. Это позволило использовать данную характеристику для построения вероятностной модели. В соответствии с используемой методикой на первом этапе построения вероятностной модели в каждом интервале определяются вероятности принадлежности к территориям нефтяных месторождений (Р(Бхл/Бсби)). Далее интервальные вероятности принадлежности к 1-му классу сопоставляются со средними интервальными значениями Бхл/Бсби. По величинам Р(Бхл/Бсби) и Бхл/Бсби высчитывается парный коэффициент корреляции r и строится уравнение регрессии. Последующая корректировка построенных моделей выполняется из условия, что среднее значение вероятностей для территорий нефтяных месторождений должно быть больше 0,5, а для территорий за пределами нефтяных месторождений меньше 0,5. Таким образом, линейные модели, построенные для данной толщи, позволили оценить индивидуальную информативность каждого геохимического показателя в отношении нефтегазоносности. Пример графического изображения построенной линейной модели по показателю Бхл/Бсб приведен на рис. 1. Рис. 1. Зависимость Р(Бхл/Бсб) от Бхл/Бсб Отсюда видно, что при повышении значений Бхл/Бсб от 0 до 21 доли ед. величина Р(Бхл/Бсб) увеличивается от 0,494 до 0,617. Построение многомерных моделей На следующем шаге прогнозных оценок авторами работы был обоснован комплексный критерий, учитывающий построенные линейные индивидуальные вероятностные модели каждого геохимического показателя для данного комплекса. Критерий был вычислен по следующей формуле: Таблица 3 Исследование сочетаний вероятности принадлежности к классу территорий в пределах контуров месторождений при разных значениях m Вероятность Сочетание вероятностей при различных m 2 3 4 5 6 7 8 9 10 Р(НО) + + + + + Р(Сорг) + + Р(ОВ) + Р(Бпэ) + + + + + + + + + Р(Бхл) + + + + + + Р(Бсб) + + + + + + + + + Р(ГумК) + + + + Р(Бхл/Бсб) + + + + + + + Р(β) + + + Р(Кк) + + + + + + + + Среднее значение вероятности по территориям в пределах контуров месторождений 0,515 0,529 0,531 0,532 0,533 0,532 0,532 0,532 0,532 Среднее значение вероятности по территориям за пределами контуров месторождений 0,486 0,470 0,470 0,468 0,469 0,468 0,467 0,467 0,467 4,267 0,00002 4,3953 0,000017 4,6082 0,000007 4,7188 0,000004 4,7591 0,000003 4,7792 0,000003 4,7542 0,000003 4,7511 0,000004 4,7445 0,000004 где Рин - соответственно индивидуальные вероятности Р(Кк), Р(НО), Р(Сорг), Р(ОВ), Р(Бпэ), Р(Бхл), Р(ГумК), Р(Бхл/Бсб), Р(β), а П - их произведение. При вычислении комплексного критерия Ркомп для верхнедевонско-турнейского нефтегазового комплекса использовалось такое сочетание вероятностей m, при котором средние значения вероятностей Ркомп в группах наиболее статистически различны (табл. 3). Выбранные таким образом сочетания вероятностей, вычисленные по геохимическим показателям от m = 2 до m = 10, приведены в табл. 3. Из табл. 3 видно, что на первом шаге построения модели, при m = 2, были использованы значения Р(Бпэ) и Р(Бсб), при m = 3 в модель была дополнительно включена вероятность Р(Кк), далее последовательно включались в построение модели Р(Бхл/Бсб), Р(Бхл), Р(НО), Р(ГумК), Р(β), Р(Сорг), Р(ОВ). Зависимость значений от m приведено на рис. 2. Отсюда видно, что при повышении m от 1 до 6 среднее значение для территорий в пределах контуров месторождений закономерно растет от 0,515 до 0,533, затем при m > 6 остается постоянным. Для территорий за пределами контуров месторождений наблюдается тенденция уменьшения значений при повышении m. Для разработки методики вычисления значений по данным отложениям с используемыми показателями будем использовать значения при m = 7. Это определяется тем, что при данном сочетании имеется максимальное значение критерия t. Рис. 2. Зависимость значений от m Таблица 4 Корреляционная матрица Кк НО Сорг ОВ Бпэ Бхл Бсб ГумК Бхл/Бсб β 1,00 1,00 1,00 -0,73* -0,85* 0,96* 0,28* 0,22 0,57* -0,02 0,14 -0,30* -0,02 0,13 -0,31* 0,50* 0,54* 0,07 0,29* 0,35* -0,52* 0,37* 0,35* -0,22 -0,19 -0,00 -0,37* 0,24 0,51* -0,33* 0,09 0,42* -0,39 Кк 1,00 1,00 1,00 -0,53* -0,45* -0,68* 0,16 -0,09 0,33* 0,17 -0,08 0,34* 0,16 0,14 0,25 0,23 0,06 0,63* 0,21 0,08 0,42* 0,10 -0,01 0,26* 0,03 -0,21 0,42* 0,25* -0,11 0,46 НО 1,00 1,00 1,00 0,14 0,25 -0,01 0,14 0,25 -0,02 -0,22 -0,24 -0,15 -0,10 0,04 -0,62* -0,25 -0,20 -0,52* 0,08 0,30 -0,04 -0,12 0,05 -0,38* -0,39* -0,08 -0,52 Сорг 1,00 1,00 1,00 1,00* 1,00* 1,00* 0,10 -0,04 0,41* 0,28* 0,65* 0,26 0,15 0,17 0,43* 0,11 0,26 0,57 0,02 -0,05 -0,05 -0,11 -0,11 -0,21 ОВ 1,00 1,00 1,00 0,10 0,04 0,41* 0,28* 0,65* 0,26 0,15 0,17 0,43* 0,11 0,26 0,57 0,02 -0,05 -0,05 -0,11 -0,11 -0,21 Бпэ 1,00 1,00 1,00 0,45* 0,39* 0,06 0,64* -0,06 0,51* -0,09 0,03 0,04 0,31* 0,64 -0,02 0,33* 0,48* -0,05 Бхл 1,00 1,00 1,00 0,41* 0,19 0,49* 0,00 0,31 0,22 0,26* 0,34 0,47* 0,32* 0,42* 0,57* Бсб 1,00 1,00 1,00 0,01 0,13 0,15 -0,03 -0,19 -0,02 0,15 -0,03 0,01 ГумК 1,00 1,00 1,00 -0,05 -0,08 -0,04 -0,11 -0,07 0,11 Бхл/Бсб 1,00 1,00 1,00 0,66* 0,90* 0,75* β 1,00 1,00 1,00 Примечание: верхняя строка - все данные, средняя строка - контур месторождений, нижняя строка - за контуром месторождений; * - статистически значимые корреляционные связи. Необходимость построения многомерной модели связана с тем, что изучаемые показатели различно влияют на комплексный критерий как по силе, так и по направлению. Исследуем влияние всех изучаемых показателей путем вычисления коэффициентов корреляции r, определенных в трех вариантах: первый вариант - по всем данным, второй - по данным геохимических проб, отобранных в пределах контуров месторождений, третий - за пределами контуров месторождений. Результаты расчетов значений r приведены в табл. 4. Отсюда видно, что значения коэффициентов корреляции r между изучаемыми показателями различные. Например, корреляция между и β для проб, отобранных в пределах контуров месторождений, имеет статистически значимую положительную связь, тогда как для проб, отобранных за пределами контуров месторождений, она также статистически значимая, но обратная. Различия по направленности и тесноте корреляций для изучаемых двух классов наблюдаются между и другими геохимическими показателями (см. табл. 4). Также необходимо отметить, что между показателями, формирующими значения для двух изучаемых классов, наблюдаются различные статистические связи. Например, корреляция между Бпэ и Бхл для проб, отобранных в пределах контуров месторождений, имеет статистически значимую положительную связь, тогда как для проб, отобранных за пределами контуров месторождений, она практически отсутствует. Все эти данные показывают, что наблюдаются статистические отличия как в распределениях, так и в корреляциях для проб, отобранных в пределах контуров месторождений и за их контурами. Следовательно, нефтегазоносность Висимской моноклинали зависит от геохимических характеристик РОВ верхнедевонско-турнейских отложений. По мнению авторов данной работы, по этим показателям можно произвести зональную нефтегазоносность изучаемой территории. Для учета многообразия различных, и в ряде случаев разнонаправленных, влияний изучаемых показателей на построим многомерные модели с помощью пошагового регрессионного анализа. Расчет регрессионных коэффициентов в разрабатываемой модели выполним при помощи метода наименьших квадратов. Под регрессионным анализом понимается статистический метод исследования зависимостей между зависимой переменной Y и одной или несколькими независимыми переменными Х1, Х2, Хр. Зависимый признак в регрессионном анализе называется результирующим, независимый - факторным. Обычно на зависимую переменную действуют сразу несколько факторов. Совокупное влияние всех независимых факторов на зависимую переменную учитывается благодаря множественной регрессии. В общем случае множественную регрессию оценивают параметры линейного уравнения вида Y = а + b1X1 + b2X2 +…+ bрXр. В данном уравнении регрессионные коэффициенты (b-коэффициенты) представляют независимые вклады каждой независимой переменной в предсказание зависимой переменной. Линия регрессии выражает наилучшее предсказание зависимой переменной (Y) по независимым переменным (Хn). В нашем случае в качестве зависимого признака выступает , а в качестве независимых факторов - значения Кк, НО, Сорг, ОВ, Бпэ, Бхл, ГумК, Бхл/Бсб, β. Таблица 5 Значения Площадь № скважины Возраст Кол-во проб среднее min max Висим-Истокская 33 D3f2-C1t 10 0,458 ± 0,164 0,369 0,887 Висимская 11 D3f2-C1t 7 0,408 ± 0,043 0,379 0,502 Висимская 13 D1-D3f1 21 0,445 ± 0,067 0,373 0,574 Висимская 14 D3f2-C1t 9 0,467 ± 0,087 0,379 0,646 Висимская 15 D3f2-C1t 21 0,536 ± 0,111 0,381 0,695 Висимская 16 D3f2-C1t 17 0,556 ± 0,157 0,397 0,972 Висимская 23 D3f2-C1t 2 0,384 ± 0,008 0,378 0,390 Гаринская 62 D1-D3f1 27 0,552 ± 0,012 0,540 0,581 Дмитриевская 2 D3f2-C1t 7 0,545 ± 0,003 0,542 0,551 Дмитриевская 5 D3f2-C1t 3 0,384 ± 0,015 0,369 0,401 Инвинская 71 D3f2-C1t 6 0,387 ± 0,016 0,370 0,413 Карнашевская 90 D3f2-C1t 7 0,378 ± 0,021 0,363 0,410 Касибская 15 D3f2-C1t 4 0,411 ± 0,013 0,393 0,421 Касибская 2 D3f2-C1t 2 0,390 ± 0,025 0,372 0,409 Касибская 3 D1-D3f1 6 0,573 ± 0,018 0,548 0,592 Купросская 9 D1-D3f1 13 0,552 ± 0,007 0,546 0,562 Майкорская 13 D3f2-C1t 6 0,794 ± 0,212 0,373 0,982 Назаровская Дуринская D3f2-C1t 16 0,385 ± 0,022 0,346 0,442 Назаровская Иважинская D1-D3f1; D3f2-C1t 30 0,434 ± 0,077 0,366 0,561 Нылобско-Урайская 17 D1-D3f1; D3f2-C1t 14 0,434 ± 0,086 0,369 0,548 Родниковская 12 D3f2-C1t 1 0,369 Романшорская 1 D3f2-C1t 16 0,552 ± 0,060 0,372 0,696 Сенькинская Белопашнинская D1-D3f1 4 0,553 ± 0,015 0,533 0,576 Слуцкая 279 D1-D3f1; D3f2-C1t 18 0,423 ± 0,062 0,375 0,558 Тукачевская 3 D1-D3f1 10 0,560 ± 0,015 0,546 0,584 Усть-Кондасская 3 D3f2-C1t 3 0,489 ± 0,090 0,385 0,543 Чермозская 3 D1-D3f1; D3f2-C1t 14 0,585 ± 0,043 0,544 0,691 Шатовская 287 D1-D3f1; D3f2-C1t 22 0,524 ± 0,110 0,371 0,808 Шатовская 293 D3f2-C1t 9 0,412 ± 0,066 0,374 0,586 Таблица 6 Распределение значений среднее, min, max Интервалы варьирования 0,0-0,1 0,1-0,2 0,2-0,3 0,3-0,4 0,4-0,5 0,5-0,6 0,6-0,7 0,7-0,8 0,8-0,9 0,9-1,0 Среднее - - - 0,241 0,351 0,373 - 0,035 - - Минимальное - - - 0,758 - 0,242 - - - - Максимальное - - - 0,068 0,208 0,448 0,138 - 0,069 0,069 Построенная модель по геохимическим характеристикам РОВ верхнедевонско-турнейских отложений имеет следующий вид: = 2,952 - 2,26761Кк + 2,26761Бпэ + + 0,16153Бхл + 0,22506Бсб + + 0,000742Бхл/Бсб - 0,45018ГумК - - 0,00005НО + 0,00005β + 0,0001ОВ при R = 0,999, р < 0,0000, ошибка прогноза равна 0,00311. Формирование очередности включения показателей в уравнения регрессии происходило в последовательности показателей, приведенных в уравнении. На первом шаге формирования уравнения был включен показатель Кк при R = 0,726; далее величина R изменялась следующим образом: 0,956; 0,981; 0,991; 0,994; 0,996; 0,997; 0,998; 0,999. С помощью данной модели вычислены значения по всем геохимическим пробам, отобранным из данных отложений. Информация о номерах скважин, из которых были отобраны пробы, возрасте, их количестве и значениях приведена в табл. 5. По данным 29 скважин и 322 определений показателей РОВ среднее значение = 0,480 ± ± 0,094, оно варьируется от 0,346 до 0,982. По данным табл. 5 построены плотности распределений значений среднее, min, max, приведенные в табл. 6. Отсюда видно, что значения во всех трех случаях изменяются незначительно. Например, вероятность среднее в большинстве случаев имеет значения в диапазоне 0,4-0,6 (0,724). По средним значениям в скважинах была построена схема распределения вероятности нефтегазоносности для территории Висимской моноклинали (рис. 3). Заключение В результате выполненных исследований установлено, что максимально благопри-ятные геохимические условия формирования Рис. 3. Схема распределения вероятности нефтегазоносности по геохимическим и битуминологическим характеристикам для территории Висимской моноклинали нефтегазоносности за счет РОВ наблюдаются в центральной части Висимской моноклинали, в пределах Майкорского месторождения и территории вокруг него, ограниченной изовероятностью больше 0,5. Также определенный интерес с точки зрения зональной нефтегазоносности представляют участки на юге Висимской моноклинали на территориях, где > 0,5. Вероятно, определенный интерес имеют территории на севере Висимской моноклинали. Данная схема будет использована в дальнейших оценках зональной нефтегазоносности территории Висимской моноклинали.

Об авторах

Владислав Игнатьевич Галкин

Пермский национальный исследовательский политехнический университет

Автор, ответственный за переписку.
Email: vgalkin@pstu.ru
614990, Россия, г. Пермь, Комсомольский пр., 29

доктор геолого-минералогических наук, профессор, заведующий кафедрой геологии нефти и газа

Константин Александрович Кошкин

ООО «УралОйл»

Email: konstkoshkin@rambler.ru
614990, Россия, г. Пермь, ул. Сибирская, 4

начальник отдела геологии и лицензирования

Олег Александрович Мелкишев

Пермский национальный исследовательский политехнический университет

Email: melkishev@pstu.ru
614990, Россия, г. Пермь, Комсомольский пр., 29

кандидат технических наук, доцент кафедры геологии нефти и газа

Список литературы

  1. Галкин В.И., Растегаев А.В., Галкин С.В. Вероятностно-статистическая оценка нефтегазоносности локальных структур / УрО РАН. - Екатеринбург, 2001. - 277 с.
  2. Козлова И.А., Галкин В.И., Ванцева И.В. К оценке перспектив нефтегазоносности Соликамской депрессии с помощью геолого-геохимических характеристик нефтегазоматеринских пород // Нефтепромысловое дело. - 2010. - № 7. - С. 20-23.
  3. Кривощеков С.Н., Галкин В.И., Носов М.А. Оценка нелокализованных ресурсов нефти территории Пермского края при помощи системы элементарных участков // Нефтяное хозяйство. - 2014. - № 6. - С. 9-11.
  4. Кривощеков С.Н., Козлова И.А., Санников И.В. Оценка перспектив нефтегазоносности западной части Соликамской депрессии на основе геохимических и геодинамических данных // Нефтяное хозяйство. - 2014. - № 6. - С. 12-15.
  5. Геохимические показатели РОВ пород как критерии оценки перспектив нефтегазоносности / В.И. Галкин, И.А. Козлова, О.А. Мелкишев, М.А. Шадрина // Нефтепромысловое дело. - 2013. - № 9. - С. 28-31.
  6. Козлова И.А., Мелкишев О.А. Прогнозная оценка распределения нелокализованных ресурсов нефти в девонском терригенном комплексе на территории Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2017. - № 2. - С. 4-8.
  7. Галкин В.И., Козлова И.А. Разработка вероятностно-статистических регионально-зональных моделей прогноза нефтегазоносности по данным геохимических исследований верхнедевонских карбонатных отложений // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2016. - № 6. - С. 40-45.
  8. Оценка перспектив нефтегазоносности юга Пермского края по органогеохимическим данным / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, М.А. Носов, Н.С. Колтырина // Нефтепромысловое дело. - 2015. - № 7. - С. 32-35.
  9. Решение региональных задач прогнозирования нефтеносности по данным геолого-геохимического анализа рассеянного органического вещества пород доманикового типа / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, М.А. Носов // Нефтяное хозяйство. - 2015. - № 1. - С. 21-23.
  10. К обоснованию построения моделей зонального прогноза нефтегазоносности для нижне-средневизейского комплекса Пермского края / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, О.А. Мелкишев // Нефтяное хозяйство. - 2015. - № 8. - С. 32-35.
  11. Галкин В.И., Жуков Ю.А., Шишкин М.А. Применение вероятностных моделей для локального прогноза нефтегазоносности / Уро РАН. - Екатеринбург, 1990. - 108 с.
  12. Зональный прогноз нефтегазоносности юрских отложений в пределах территории деятельности ТПП «Когалымнефтегаз» / В.В. Бродягин, А.А. Потрясов, К.Г. Скачек, А.Н. Шайхутдинов // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2008. - № 8. - С. 31-35.
  13. Галкин В.И., Шайхутдинов А.Н. О возможности прогноза нефтегазоносности юрских отложений вероятностно-статистическими методами (на примере территории деятельности ТПП «Когалымнефтегаз») // Геология, геофизика и разработка нефтяных и газовых месторождений. -2009. - № 6. - С. 11-14.
  14. Галкин В.И., Шайхутдинов А.Н. Построение статистических моделей для прогноза дебитов нефти по верхнеюрским отложениям Когалымского региона // Нефтяное хозяйство. - 2010. - № 1. - С. 52-54.
  15. Галкин В.И., Кривощеков С.Н. Построение матрицы элементарных ячеек при прогнозе нефтегазоносности вероятностно-статистическими методами на территории Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2008. - № 8. - С. 20-23.
  16. Галкин В.И., Кривощеков С.Н. Обоснование направлений поисков месторождений нефти и газа в Пермском крае // Научные исследования и инновации. - Пермь, 2009. - Т. 3, № 4. - С. 3-7.
  17. К методике оценки перспектив нефтегазоносности Соликамской депрессии по характеристикам локальных структур / В.И. Галкин, И.А. Козлова, А.В. Растегаев, И.В. Ванцева, С.Н. Кривощеков, В.Л. Воеводкин // Нефтепромысловое дело. - 2010. - № 7. - С. 12-17.
  18. Прогнозная оценка нефтегазоносности структур на территории Соликамской депрессии / В.И. Галкин, А.В. Растегаев, И.А. Козлова, И.В. Ванцева, С.Н. Кривощеков, В.Л. Воеводкин // Нефтепромысловое дело. - 2010. - № 7. - С. 4-7.
  19. Додевонские отложения Пермского Прикамья как одно из перспективных направлений геолого-разведочных работ / Т.В. Белоконь, В.И. Галкин, И.А. Козлова, С.Е. Пашкова // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2005. - № 9. - С. 24-28.
  20. Путилов И.С. Разработка технологий комплексного изучения геологического строения и размещения месторождений нефти и газа. - Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2014. - 285 с.
  21. О возможности прогнозирования нефтегазоносности фаменских отложений с помощью построения вероятностно-статистических моделей / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, Е.В. Пятунина, С.Н. Пестова // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2007. - № 10. - С. 22-27.
  22. Галкин В.И., Соловьев С.И. Районирование территории Пермского края по степени перспективности приобретения нефтяных участков недр // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2015. - № 16. - С. 14-24. doi: 10.15593/224-9923/2015.16.2
  23. Соснин Н.Е. Разработка статистических моделей для прогноза нефтегазоносности (на примере терригенных девонских отложений Северо-Татарского свода) // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2012. - № 5. - С. 16-25.
  24. Галкин В.И., Соснин Н.Е. Разработка геолого-математических моделей для прогноза нефтегазоносности сложнопостроенных структур в девонских терригенных отложениях // Нефтяное хозяйство. - 2013. - № 4. - С. 28-31.
  25. Дементьев Л.Ф. Математические методы и ЭВМ в нефтегазовой геологии. - М.: Недра, 1987. - 264 с.
  26. Давыденко А.Ю. Вероятностно-статистические методы в геолого-геофизических приложениях. - Иркутск, 2007. - 29 с.
  27. Михалевич И.М. Применение математических методов при анализе геологической информации (с использованием компьютерных технологий). - Иркутск, 2006. - 115 с.
  28. Андрейко С.С. Разработка математической модели метода прогнозирования газодинамических явлений по геологическим данным для условий Верхнекамского месторождения калийных солей // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2016. - № 21. - С. 345-353. doi: 10.15593/224-9923/2016.21.6
  29. Девис Дж. Статистика и анализ геологических данных. - М.: Мир, 1977. - 353 с.
  30. Поморский Ю.Л. Методы статистического анализа экспериментальных данных: монография. - Л., 1960. - 174 с.
  31. Черепанов С.С. Комплексное изучение трещиноватости карбонатных залежей методом Уоррена - Рута с использованием данных сейсмофациального анализа (на примере турнефаменской залежи Озерного месторождения) // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2015. - № 14. - С. 6-12. doi: 10.15593/224-9923/2015.14.1
  32. Галкин В.И., Пономарева И.Н., Черепанов С.С. Разработка методики оценки возможностей выделения типов коллекторов по данным кривых восстановления давления по геолого-промысловым характеристикам пласта // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2015. - № 17. - С. 32-40. doi: 10.15593/224-9923/2015.17.4
  33. Черепанов С.С., Мартюшев Д.А., Пономарева И.Н. Оценка фильтрационно-емкостных свойств трещиноватых карбонатных коллекторов месторождений Предуральского краевого прогиба // Нефтяное хозяйство. - 2013. - № 3. - С. 62-65.
  34. Галкин В.И., Куницких В.И. Статистическое моделирование расширяющегося тампонажного состава // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2017. - Т. 16, № 3. - С. 215-244. doi: 10.15593/224-9923/2017.3.2
  35. Галкин В.И., Пономарева И.Н., Репина В.А. Исследование процесса нефтеизвлечения в коллекторах различного типа пустотности с использованием многомерного статистического анализа // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2016. - № 19. - С. 145-154. doi: 10.15593/224-9923/2016.19.5
  36. Кривощеков С.Н., Галкин В.И. Построение матрицы элементарных ячеек при прогнозе нефтегазоносности вероятностно-статистическими методами на территории Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2008. - № 8. - С. 20-23.
  37. Иванов С.А., Растегаев А.В., Галкин В.И. Анализ результатов применения ГРП (на примере Повховского месторождения нефти) // Нефтепромысловое дело. - 2010. - № 7. - С. 54-58.
  38. Кривощеков С.Н., Галкин В.И., Волкова А.С. Разработка вероятностно-статистической методики прогноза нефтегазоносности структур // Нефтепромысловое дело. - 2010. - № 7. - С. 28-31.
  39. Houze O., Viturat D., Fjaere O.S. Dinamie data analysis. - Paris: Kappa Engineering, 2008. - 694 p.
  40. Van Golf-Racht T.D. Fundamentals of fractured reservoir engineering / Elsevier scientific publishing company. - Amsterdam - Oxford - New York, 1982. - 709 p.
  41. Horne R.N. Modern well test analysis: A computer Aided Approach. - 2nd ed. - Palo Alto: PetrowayInc, 2006. - 257 p.
  42. Johnson N.L., Leone F.C. Statistics and experimental design. - New York - London - Sydney - Toronto, 1977. - 606 p.
  43. Montgomery D.C., Peck E.A., Introduction to liner regression analysis. - New York: John Wiley & Sons, 1982. - 504 p.
  44. Darling T. Well logging and formation evalution. - GardnersBooks, 2010. - 336 p.
  45. Watson G.S. Statistic on spheres. - New York: John Wiley and Sons, Inc., 1983. - 238 p.
  46. Yarus J.M. Stochastic modeling and geostatistics // AAPG. - Tulsa, Oklahoma, 1994. - 231 p.

Статистика

Просмотры

Аннотация - 349

PDF (Russian) - 90

PDF (English) - 44

Ссылки

  • Ссылки не определены.

© Галкин В.И., Кошкин К.А., Мелкишев О.А., 2018

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах