Влияние параметров структуры материала на коррозионную стойкость нефтегазопромыслового оборудования
- Авторы: Апакашев Р.А.1, Хазин М.Л.1
- Учреждения:
- Уральский государственный горный университет
- Выпуск: Том 23, № 3 (2023)
- Страницы: 133-140
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/geo/article/view/4192
- DOI: https://doi.org/10.15593/2712-8008/2023.3.4
- Цитировать
Аннотация
Для повышения надежности и долговечности работы нефтегазопромыслового оборудования является перспективным применение микро- и наноструктурированных металлов и сплавов, а также металломатричных композитов. Исследовали обычные и наноструктурированные образцы алюминия, меди, бронзы БрА9ЖЗЛ, сплава АМг6 и алюмоматричный дисперсно армированный композит, содержащий 6,3 % (мас.) титана. Структурирующую обработку металлических материалов проводили в жидкофазном состоянии. Алюмоматричный композит синтезировали методом порошковой металлургии. В качестве коррозионной среды использовали модельный раствор электролита без принудительной циркуляции, содержащий 30 г/л NaCl и добавку уксусной кислоты до рН = 4,0. База испытаний составила 144 ч, температура +22 оС, объем раствора в ячейке с тремя образцами - 500 мл. Относительная расчетная погрешность испытаний составила 5 %. Для всех изученных образцов наблюдается сплошное равномерное распределение коррозионного поражения металлической поверхности. При этом скорость коррозии (П, мм/год) наноструктурированных образцов металлов и сплавов примерно на 11 % меньше, чем скорость коррозии образцов тех же металлов и сплавов, не подвергавшихся структурирующей обработке. Для алюмоматричного композита отмечено, что дисперсное армирование алюминия титаном обеспечивает повышение коррозионной стойкости матричного металла на 9,6 %. Результаты проведенных исследований свидетельствуют о повышенной коррозионной стойкости наноструктурированных металлических материалов и алюмоматричного композита, что важно при их применении в составе оборудования, эксплуатируемого в коррозионно-активной среде.
Ключевые слова
алюминий, бронза, медь, композиционные материалы, коррозия, наноматериалы, нефтегазопромысловое оборудование, сталь.
Полный текст
Введение Нефтегазовый сектор играет значительную роль в экономике России и составляет 15-25 % ВВП (в 2022 г. 20 %) (рис. 1). В других странах доля нефтегазового сектора в ВВП составляет, например, в Саудовской Аравии - 50 %, ОАЭ - 30 %, Норвегии - 14 %, Казахстане - 13,3 %, Канаде - менее 10 %, США - 8 % (РБК: https://www.rbc.ru/economics/13/ 07/21/60ec40 d39a7947f74aeb2aae). Металлическое оборудование и конструкции в нефтяной и газовой промышленности контактируют с сырой нефтью, природным газом, нефтепродуктами, растворителями, водой, почвой и атмосферой. Нефть и нефтепродукты современных месторождений содержат значительное количество агрессивных составляющих (хлориды, сероводород, углекислый газ, бактерии и др.), что осложняет эксплуатацию нефтедобывающего и транспортирующего оборудования [1-4]. Коррозия оборудования при добыче нефти и газа неизбежна и вызывается водой, двуокисью углерода (CO2), сероводородом (H2S) и может усугубляться в скважинах, где высокие температуры в сочетании с H2S создают другие проблемы, связанные с коррозией и образованием отложений сульфида железа (FeS) [4, 5]. Поэтому коррозия нефтехимического оборудования является одной из причин, влияющих на безопасность процессов и устойчивость нефтехимической промышленности [3, 6-8]. Кислоты и газы, оксиды серы, органические пары разъедают материал и вызывают повреждения. Удаление различных газов из потока может осуществляться абсорбцией, электростатическими сепараторами и адсорбцией [9-11]. Сточные воды этих производств содержат различные химические вещества, поэтому эта вода также нуждается в очистке для защиты окружающей среды. Органические и неорганические примеси (фенол, уксусная кислота и органические вещества) могут быть удалены различными химическими и биологическими методами [2, 5, 10]. Удаление примесей помогает уменьшить коррозию, а некоторые из этих химикатов могут быть повторно использованы после отделения их от воды [5, 7, 8]. Сочетание многочисленных факторов делает нефтеперерабатывающее оборудование уязвимым для различных коррозионных явлений, которые могут привести к серьезным убыткам и авариям. Большие потери от коррозии свойственны для всех стран, имеющих нефтехимическую и нефтеперерабатывающую отрасли промышленности (табл. 1). Почти 80 % аварий и выходов технологического оборудования из строя на нефтедобывающих и нефтеперерабатывающих предприятиях России являются следствием его коррозионного разрушения. Например, удельная частота отказов трубопроводов (шт./км/год) вследствие коррозии для нефтяных компаний ПАО «Газпром нефть», ОАО «Дагнефть», ПАО «ЛУКОЙЛ», ПАО «НК “Роснефть”», ООО «РН-Юганскнефтегаз», АО «Самаранефтегаз», ООО «РН-Сахалинморнефтегаз», ООО «РН-Ставропольнефтегаз» существенно превышает допустимые показатели надежности промысловых трубопроводных систем. Рис. 1. Нефтегазовый сектор в экономике России (Росстат, Минфин, ФТС, Банк России, компания ВР: https://www.rbc.ru/economics/13/07/2021/ 60ec40d39a7947f74aeb2aae): ● - доля нефтегазового сектора в ВВП России, % ● - доля нефтегазовых доходов в федеральном бюджете, % ● - доля нефти и газа в товарном экспорте ВВП России, % - средние цены на нефть Brent, USD за баррель Таблица 1 Потери от коррозии [3-7, 9, 10] Страна Общие потери от коррозии, млн USD/г Затраты на защиту от коррозии, млн USD/г Англия 440 США 500 Япония 575 340 Россия 390 370 На скважинах месторождений ООО «ЛУКОЙЛ-Коми», ООО «РНСтавропольнефтегаз», ОАО «Томскнефть» ВНК и др. срок эксплуатации подвески насосно-компрессорных труб не превышает 4-6 месяцев [1, 2, 9, 10]. Аварии по причине коррозии увеличивают стоимость плановых и неплановых ремонтов нефтепромыслового оборудования и уменьшают сроки его амортизации. Потери металлов вследствие коррозии составляют в России до 12 % общей массы металлофонда, что эквивалентно потере почти 30 % металла, выпускаемого металлургической промышленностью за год. Однако основной ущерб от коррозии состоит не в потере металла как материала, а в значительной стоимости повреждаемого коррозией оборудования и его ремонта, а также убытка вследствие простоев предприятия при добыче нефти и газа. Во многих странах общие потери от коррозии составляют до 30 % от затрат на добычу нефти и газа или 4-6 % национального дохода [1, 4, 5, 12]. Защита от коррозии Коррозия является одной из наиболее серьезных проблем, с которыми сталкиваются нефтедобывающие предприятия и нефтеперерабатывающие заводы. Ежегодные затраты на коррозию оцениваются в миллиарды долларов, поэтому защита деталей и конструкций от коррозионного разрушения является актуальной задачей, что определяет необходимость разработки новых коррозионно-стойких материалов и средств их защиты [2-4, 14-17]. Важность этой проблемы подтверждает 1887 исследований, опубликованных с 2000 по 2020 г. на поисковых платформах WOS SCIE, SSCI, A & HCI и CPCI-S [2-4, 7, 13]. Для защиты оборудования от коррозии применяют различные методы: использование ингибиторов коррозии и современных материалов, катодную защиту и нанесение защитных покрытий. Каждому методу присущи свои достоинства, особенности и недостатки. Ингибиторы коррозии обычно используют для уменьшения коррозионного воздействия металлов [14-17]. Но большинство ингибирующих соединений оказывают вредное воздействие на окружающую среду, а также являются дорогостоящими и токсичными. Поэтому растет осознание необходимости замены нефтяных ингибиторов экологически чистыми [17-20]. Сталь и алюминий являются основными металлами, используемыми почти во всех отраслях нефтегазовой промышленности. Углеродистые и низколегированные углеродистые стали являются первой альтернативой, которую следует учитывать при выборе материала не только с точки зрения стоимости, но и из-за их доступности. Поэтому предпринимаются значительные усилия для повышения коррозионной стойкости углеродистых и низколегированных сталей. Когда окружающая среда слишком агрессивна для углеродистых сталей, одним из способов уменьшить проблемы с коррозией является использование ингибиторов. Однако в условиях высокой агрессивности окружающей среды и высоких температур могут потребоваться более дорогие материалы, например, коррозионно-стойкие сплавы [21-23]. Еще одним ключевым фактором является чистота стали, поскольку включения могут служить местами зарождения трещин. Кроме того, содержание таких элементов, как P и S, должно быть сведено к минимуму. Производство нержавеющих сталей и сплавов связано со значительным расходом дефицитных и дорогостоящих материалов и компонентов. Поэтому все промышленно развитые страны не увеличивают выпуск этих материалов, а используют современные технологии для нанесения покрытий и повышения коррозионной стойкости деталей [24-26], а также ведут исследования по разработке и созданию коррозионно-стойких и недорогих материалов [8, 26, 27]. Для снижения воздействия агрессивной среды применяются различные антикоррозионные, износостойкие покрытия [23, 25], и нанопокрытия [27, 28]. Проблема использования специализированных пассивирующих металлов и сплавов заключается в достаточно узком диапазоне характеристик защитной пленки. При незначительном изменении условий эксплуатации пленка разрушается и в месте разрыва пленки начинается лавинообразный процесс локальной коррозии [24]. Нефтегазовая отрасль предъявляет к материалам повышенные требования: агрессивная среда, высокие температуры и давления, и др. Таким требованиям в значительной мере удовлетворяют функциональные наноструктурные и металломатричные композиционные материалы. В последние десятилетия был достигнут значительный прогресс в улучшении композитных материалов с матрицей из легких металлов с целью их использования в наиболее ответственных областях применения [29-31]. Существенную часть таких материалов составляют композиты на основе меди, алюминия и их сплавов. Диспергирование функционального наполнителя в металлической матрице позволяет достичь уровня свойств, обеспечивающих возможность разработки материалов для специализированного применения [32-35]. Во многих работах изучалось коррозионное поведение алюмоматричных композитов, армированных карбидами [29], огнеупорами [34], графитом [31] и другими наполнителями [30]. Методология проведения исследований В настоящей работе исследовали влияние параметров структуры на коррозионную стойкость алюминия, меди и сплавов на их основе. Испытывали обычные и наноструктурированные образцы алюминия, меди, бронзы БрА9ЖЗЛ, сплава АМг6 и сплава Al-Ti, содержащего 6,3 % (мас.) титана. Для синтеза композита использовали порошки металлов: первичного алюминия (марка А0), меди М1 и технического титана (ВТ1-00). Порошки металлов при шихтовании перетирали в агатовой ступке до однородного состояния. Достижение однородности шихты контролировали с помощью оптического микроскопа. Плавку металлов и сплавов проводили в тиглях из диоксида циркония в восстановительной атмосфере электрической печи сопротивления с графитовым нагревателем. Структурирующую обработку исследуемых металлических материалов проводили в жидкофазном состоянии по ранее разработанной методике [36]. Нанокристаллический характер образцов металлов и сплавов фиксировали с помощью двулучевого электронно-ионного микроскопа ZEISS CrossBeam AURIGA и атомно-силовой микроскопии (АСМ), используя сканирующий зондовый микроскоп NEXT с кантилевером NSG30. Сравнительные испытания коррозионной стойкости проводили на трех образцах синтезированного наноструктурного и композиционного материала и трех образцах аналогичных геометрических размеров алюминия марки А0 и меди марки М1. Испытания проводили в статических условиях, без принудительной циркуляции коррозионной среды. В качестве испытательной коррозионной среды использовали модельный раствор электролита, содержащий 30 г/л NaCl с добавкой уксусной кислоты до рН = 4,0. Итоговые значения скорости коррозии рассчитывали как среднее арифметическое значение результатов трех соответствующих испытаний с относительной погрешностью, не превышающей 5 %. Перед испытанием образцы цилиндрической формы полировали до зеркального блеска, промывали этиловым спиртом и после просушивания взвешивали с точностью ± 0,0001 г. Затем по три образца одного металла или сплава с одинаковой предысторией в отношении потоковой обработки помещали в одну ячейку, обеспечивая полное погружение в раствор и отсутствие контакта поверхности образцов. Для крепления (подвеса) образцов использовали нить из синтетического материала. После окончания испытаний образцы извлекали из ячейки, промывали теплой дистиллированной Таблица 2 Результаты исследования коррозионной стойкости меди, алюминия и металломатричных композиционных материалов № п/п Материал Образец Vk, г/(м2∙ч) П, мм/г мм/г 1 Al 1 0,1318 0,4279 0,4397 2 0,1371 0,4415 3 0,1377 0,4496 2 Al/Ti 1 0,8251 2,7514 0,3974 2 0,1232 0,3812 3 0,1321 0,4089 3 АМг6 1 0,8251 2,7514 2,729 2 0,8011 2,6582 3 0,8377 2,7775 4 Cu (М1) 1 0,2045 0,2005 0,1983 2 0,1964 0,1926 3 0,2061 0,2019 5 БрА9ЖЗЛ 1 0,0760 0,0878 0,0875 2 0,0741 0,0855 3 0,0772 0,0893 водой и этиловым спиртом, просушивали и взвешивали. Дополнительно фиксировали внешний вид образцов и проводили оценку состояния их поверхности. База испытаний составила 144 ч, температура +22 °С, объем раствора в ячейке с тремя образцами - 500 мл. Итоговые значения скорости коррозии рассчитывали как среднее арифметическое значение результатов трех соответствующих испытаний с относительной погрешностью, не превышающей 5 %. При сплошной равномерной коррозии металлических материалов коррозионную стойкость характеризуют такими количественными показателями коррозии, как потеря массы на единицу площади поверхности и глубина проникновения коррозии. Соответственно рассчитывают скорость убыли массы и линейную скорость коррозии [37]. Скорость убыли массы - величина Vk, представляющая собой отношение: (1) где m1, m2 - масса образца до и после коррозии соответственно, г; t - время коррозионного разрушения, ч; S - площадь поверхности образца, м2. Массовые потери при коррозии могут быть пересчитаны в скорость коррозии, выраженную в мм/г: (2) где П - скорость коррозии, мм/год; r - плотность металла, г/см3; Vk - скорость коррозии, г/(м2.ч); 8,76 - коэффициент. Плотность металлических материалов для использования в расчетах скорости коррозии определяли методом гидростатического взвешивания. Обсуждение результатов Результаты исследований коррозионной стойкости алюминия, меди, их сплавов и металломатричного сплава Al/Ti представлены в табл. 2. В результате проведенных исследований установлено, что для всех исследованных образцов наблюдается сплошная равномерная коррозия, характеризующаяся равномерным распределением коррозионного поражения металлической поверхности (рис. 2). На основании величины П можно произвести оценку коррозионной стойкости металлов по десятибалльной шкале согласно ГОСТ 9.908-85 «Единая система защиты от коррозии и старения. Металлы и сплавы. Методы определения показателей коррозии и коррозионной стойкости» [37]. Коррозионная стойкость образцов бронзы C95200 оценивается в 4 балла, образцов алюминия - в 5 баллов. При этом скорость коррозии (П, мм/год) образцов металлов и сплавов, испытавших потоковую обработку в расплавленном состоянии, примерно на 11 % меньше, чем скорость коррозии образцов тех же металлов и сплавов, но не подвергавшихся потоковой обработке в расплавленном состоянии. Отметим, что наибольшее расчетное значение относительной погрешности результатов коррозионных испытаний, составляющее 4,8 %, получено для 518,0 aluminum-magnesium alloy, подвергавшегося потоковой обработке в расплавленном состоянии (рис. 3). При этом дисперсное армирование алюминия титаном обеспечивает повышение коррозионной стойкости матричного металла на 9,6 %, что имеет значение при использовании композита в качестве металлического конструкционного материала. Чистый алюминий демонстрирует хорошую коррозионную стойкость, но плохие механические свойства и поэтому его легируют другими элементами для повышения прочности. Упрочнение твердого Al Al-Ti АМг6 Cu БрА9ЖЗЛ Рис. 2. Поверхность образцов после испытаний коррозионной стойкости (×200) Рис. 3. Относительная коррозионная стойкость образцов раствора, дисперсионное упрочнение, измельчение зерна и деформационное упрочнение являются основными механизмами упрочнения алюминиевых сплавов. Однако получение и деформационное упрочнение вызывают электрохимические неоднородности, вызывающие локальную коррозию. Следовательно, в сплавах Al существует компромисс между механическими и коррозионными свойствами. Характеристики матрицы и вторичных фаз (т.е. состав, количество, морфология и распределение) играют жизненно важную роль в определении коррозионных характеристик. Коррозионная стойкость литых алюминиевых сплавов изучалась многими исследователями, например, [39-41], и др. С точки зрения кинетики коррозионных процессов алюминиевые сплавы являются короткозамкнутой системой многоэлектродных элементов [42]. Поверхность металла содержит участков с различными величинами потенциалов. Участки поверхности, достигшие потенциала пробоя, имеют повышенную адсорбционную активность и электропроводимость. На этих участках адсорбируются активные ионы, при этом вытесняется кислород и образуется комплекс «металл - анион», переходящий в раствор. Поскольку растворимость большинства легирующих элементов в Al достаточно ограничена, образование вторичных фаз вызывает локальную коррозию, что неизбежно при использовании традиционных методов обработки. Например, сплавы Al-5 at.% Cr и Al-5at.% Ti, полученные литьем, показали наличие крупных кристаллов интерметаллидов и высокую скорость коррозии без значительного увеличения прочности. Поэтому желательны нетрадиционные способы производства сплавов, позволяющие повысить растворимость легирующих элементов в твердом состоянии. Например, импульсное электроосаждение или напыление. Исследование порошковых сплавов Al-5 at.% M, полученных холодным прессованием 0,01 М NaCl, показали хорошую коррозионную стойкость сплава, что объясняется одновременным влиянием границ зерен и упрочнения твердого раствора [34]. Испытания в морской воде сплавов АМг6, Д16-Т и стали 08Х17 показали 100%-ные коррозионное поражение поверхности, но отсутствие межкристаллитной коррозии и малую потерю массы [43]. Исследование отливок алюминиевых сплавов показало низкую коррозионную стойкость в основных солевых и кислых средах. В сплавах Al-Mg наблюдалась точечная, равномерная, усталостная и межкристаллитная коррозия [39, 44]. Исследование коррозионной стойкости меди и бронзы в растворе 3,5 % NaCl показало, что бронза имела среднюю коррозионную стойкость (0,43265 мм/г), которая была выше, чем у латуни и меди (0,43265 мм/г) [44, 45]. Известны исследования взаимодействия между титаном и алюминием, когда сплавы получали различными путями: армированием алюминием титановой матрицы и армированием титаном алюминиевой матрицы [29, 34]. Исследования относительной влажности, температуры, осадков и pH на атмосферную коррозию показали, что наиболее значительный вклад к коррозии всего процесса имеет величина pH [21, 34, 43, 46]. Заключение Необходимость своевременного проведения мероприятий по повышению коррозионной стойкости материалов подтверждается снижением количества аварийных ситуаций и увеличением срока стабильной работы нефтегазопромыслового оборудования. Применение деталей из алюмоматричных материалов позволяет повысить срок службы деталей без применения дорогих и дефицитных металлов. Для оценки состояния нефтегазопромыслового оборудования необходимо регулярно выполнять коррозионный контроль. Причем в целях минимизации расходов коррозионный контроль должен осуществляться лишь в местах, наиболее подверженных коррозионному воздействию. Повышение потребности нефтегазовой промышленности в материалах с уникальными физическими, механическими и химическими свойствами увеличивает области применения композиционных материалов.Об авторах
Р. А. Апакашев
Уральский государственный горный университет
М. Л. Хазин
Уральский государственный горный университет
Список литературы
- Болотова Ю.В., Ручкинова О.И. Коррозия теплообменного оборудования нефтехимических производств // Вестник ПНИПУ. - 2015. - Т. 17, № 4. - С. 102-119. doi: 10.15593/2224-9877/2015.4.08
- Поварова Л.В., Мунтян В.С., Скиба А.С. Анализ современных методов защиты нефтепромыслового оборудования от коррозии // Булатовские чтения. - 2020. - Т. 4. - С. 125-129.
- Corrosion Strategy in Oil Field System / I.A. Abdalsamed, I.A. Amar, F.A. Altohami, F.A. Salih, M.S. Mazek, M.A. Ali, A.A. Sharif // Journal of Chemical Reviews. - 2020. - Vol. 2, no. 1. - P. 28-39. doi: 10.33945/SAMI/JCR.2020.1.2
- Al-Moubaraki A.H., Obot I.B. Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook // Journal of Saudi Chemical Society. - 2021. - Vol. 25, no. 12. - P. 101370. doi: 10.1016/J.JSCS.2021.101370
- Kadhim M.G., Ali M.T. A Critical Review on Corrosion and its Prevention in the Oilfield Equipment // Journal of Petroleum Research and Studies. - 2021. - Vol. 7, no. 2. - P. 162-189. doi: 10.52716/JPRS.V7I2.195
- Solovyeva V.A., Almuhammadi K.H., Badeghaish W.O. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review // Materials. - 2023. - Vol. 16, no. 5. - P. 1795. doi: 10.3390/ma16051795
- Mapping the knowledge domains of research on corrosion of petrochemical equipment: An informetrics analysis-based study / Z. Lang, D. Wang, H. Liu, X. Gou // Engineering Failure Analysis. - 2021. - Vol. 129. - P. 105716. doi: 10.1016/J.ENGFAILANAL.2021.105716
- Corrosive Environment Assessment and Corrosion-Induced Rockbolt Failure Analysis in a Costal Underground Mine / Q. Guo, J. Pan, M. Wang, M. Cai, X. Xi1 // International Journal of Corrosion. - 2021. - Vol. - 2019. - P. 9. doi: 10.1155/2019/2105842
- Выбойщик М.А., Иоффе А.В. Научные основы разработки и методология создания сталей для производства нефтепромысловых труб повышенной прочности и коррозионной стойкости // Вектор науки Тольяттинского государственного университета. - 2019. - № 1 (47). - С. 13-20. doi: 10.18323/2073-5073-2019-1-13-20
- Двадненко М.В., Маджигатов Р.В., Ракитянский Н.А. Воздействие нефти на окружающую среду // Международный журнал экспериментального образования. - 2017. - № 3-1. - С. 89-90.
- Минина Н.Н., Дьяконова Д.Е., Изилянов А.Ю. Экологические проблемы при добыче нефти и пути их решения // Заметки ученого. - 2020. - № 7. - С. 103-107.
- Современная практика применения противокоррозионной защиты оборудования нефтедобывающих скважин / А.А. Даминов, В.В. Рагулин, А.И. Волошин, А.Г. Телин // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. - 2020. - № 6 (128). - С. 30-44. doi: 10.17122/ntj-oil-2020-6-30-44
- Серебряков А.Н., Мотузов И.С. Коррозия нефтепромыслового оборудования и мероприятия по противокоррозионной защите на нефтяном месторождении Каракудук (западный Казахстан) // Вестник РУДН. Серия: Инженерные исследования. - 2017. - Т. 18, № 2. - С. 174-181. doi: 10.22363/2312-8143-2017-18-2-174-181
- Fayomi O.S.I., Akande I.G., Odigie S. Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview // Journal of Physics: Conference Series. - 2019. - Vol. 1378. - P. 022037. doi: 10.1088/1742-6596/1378/2/022037
- Downhole corrosion inhibitors for oil and gas production - a review / M. Askari, M. Aliofkhazraei, R. Jafari, P. Hamghalam, A. Hajizadeh // Applied Surface Science Advances. - 2021. - Vol. 6. - P. 100128. doi: 10.1016/j.apsadv.2021.100128
- Tamalmani K., Husin H. Review on Corrosion Inhibitors for Oil and Gas Corrosion Issues // Applied Scitnce. - 2020. - Vol. 10. - P. 3389. doi: 10.3390/app10103389 www.mdpi
- Мукатдисов Н.И., Фархутдинова А.Р., Елпидинский А.А. Методы борьбы с коррозией и преимущества ингибиторной защиты нефтепромыслового оборудования // Вестник Казанского технологического университета. - 2014. - № 3. - С. 279-282.
- Mitigation of corrosion in petroleum oil well/tubing steel using pyrimidines as efficient corrosion inhibitor: Experimental and theoretical investigation / T.K. Sarkar, V. Saraswat, R.K. Mitra, I.B. Obot, M. Yadav // Materialstoday communications. - 2021. - Vol. 26. - P. 101862. doi: 10.1016/j.mtcomm.2020.101862
- Sanni O., Iwarere S.A., Daramola M.O. Investigation of Eggshell Agro-Industrial Waste as a Potential Corrosion Inhibitor for Mild Steel in Oil and Gas Industry // Sustainability. - 2023. - Vol. 15, no. 7. - P. 6155. doi: 10.3390/SU15076155
- Tamalmani K., Husin H. Review on Corrosion Inhibitors for Oil and Gas Corrosion Issues // Applied Science. - 2020. - Vol. 10. - P. 3389. doi: 10.3390/app10103389 www.mdpi
- Коррозия стали в сероводородсодержащих модельных средах нефтяных месторождений / А.С. Гузенкова, И.В. Артамонова, С.А. Гузенков, С.С. Иванов // Металлург. - 2021. - № 5. - С. 36-39. doi: 10.52351/00260827_2021_05_36
- Erosion-Corrosion of AISI 304L Stainless Steel Affected by Industrial Copper Tailings / Á. Soliz, L. Cáceres, F. Pineda, F. Galleguillos // Metals. - 2020. - Vol. 10. - P. 1005-1021. doi: 10.3390/met10081005
- Anti-corrosion wear-resistant coatings on parts of oil field equipment / E.N. Eremin, V.M. Yurov, M.K. Ibatov, S.A. Guchenko, V.Ch. Laurynas // Procedia Engineering. - 2016. - Vol. 152. - p. 594-600. doi: 10.1016/J.PROENG.2016.07.661
- Heavy Loaded Parts of Petrochemical Equipment Destruction Cause Investigation / A.B. Laptev, S.A. Naprienko, R.ZH. Akhiyarov, A.V. Golubev // WSEAS Transactions on Applied and Theoretical Mechanics. - 2022. - Vol. 17. - P. 1-7. doi: 10.37394/232011.2022.17.1
- Kovalev M., Alekseeva E., Shaposhnikov N. Investigation of hydroabrasive resistance of internal anti-corrosion coatings used in the oil and gas industry // 2020 IOP Conf. Ser.: Mater. Sci. Eng. - 2020. - Vol. 889, no. 012020. doi: 10.1088/1757-899X/889/1/012020
- Olorundaisi E., Jamiru T., Adegbola A.T. Mitigating the effect of corrosion and wear in the application of high strength low alloy steels (HSLA) in the petrochemical transportation industry-a review // Materials Research Express. - 2019. - Vol. 6. - P. 1265k9. doi: 10.1088/2053-1591/ab65e7
- A Review on the Corrosion Behaviour of Nanocoatings on Metallic Substrates / D.H. Abdeen, M.El. Hachach, M. Koc, M.A. Atieh // Materials. - 2019. - Vol. 12. - P. 210-252. doi: 10.3390/ma12020210
- Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate / C. Huang, X. Chen, Z. Xue, T. Wang // Science advances. - 2020: eaba1321. doi: 10.1126/sciadv.aba1321
- Fabrication and Corrosion Behaviour of Aluminium Metal Matrix Composites - A Review / R.A. Kumar, S.J. Akash, S. Arunkumar, V. Balaji, M. Balamurugan, A.J. Kumar // IOP Conf. Series: Materials Science and Engineering. - 2020. - Vоl. 923. - P. 012056. doi: 10.1088/1757-899X/923/1/012056
- Nanjan S., Murali J.G. Analysing the Mechanical Properties and Corrosion Phenomenon of Reinforced Metal Matrix Composite // Mat. Res. - 2020. - Vol. 23, no. 2. doi: 10.1590/1980-5373-MR-2019-0681
- Corrosion Resistance of Al-CNT Metal Matrix Composites / V.V. Popov, A. Pismenny, N. Larianovsky, A. Lapteva, D. Safranchik // Materials. - 2021. - Vol. 14. - P. 3530-3542. doi: 10.3390/ma14133530
- Бикмухаметов М.В., Житников Д.С. Композиционные материалы как двигатель прогресса // Интернаука. - 2020. - № 45-2 (174). - С. 19-20.
- Использование композитных материалов в нефтегазовой отрасли / А.В. Исанова, А.А. Долгих, С.А. Петров, Р.А. Задвицкий // Градостроительство. Инфраструктура. Коммуникации. - 2020. - № 2 (19). - С. 39-44.
- Microstructure and Corrosion Performance of Aluminium Matrix Composites Reinforced with Refractory High-Entropy Alloy Particulates / E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis // Appl. Sci. - 2021. - Vol. 11. - P. 1300. doi: 10.3390/app11031300
- Ненахов А.И., Сергеенкова Е.В. Возможности применения композитных материалов в области энергетики для нефтепроводов и продуктопроводов // Энергетическая политика. - 2022. - № 10 (176). - С. 54-65. doi: 10.46920/2409-5516.2022_10176.54
- Apakashev R.A., Khazin M.L., Krasikov S.A. Effect of Nanostructuring of Aluminum, Copper, and Alloys on Their Basis Wear for Resistance and Hardness // Journal of Friction and Wear. - 2020. - Vol. 41, no. 5. - P. 428-431. doi: 10.3103/s1068366620050037R.A
- ГОСТ 9.908-85. Единая система защиты от коррозии и старения. Металлы и сплавы. Методы определения показателей коррозии и коррозионной стойкости. - М.: ИПК Издательство стандартов, 1999. - 17 с.
- Rohatgi P.K., Xiang C., Gupta N. Aqueous corrosion of metal matrix composites // In Comprehensive Composite Materials II. - 2017. - P. 287-312. doi: 10.1016/B978-0-12-803581-8.09985-9
- Berlanga-Labari C., Biezma-Moraleda M.V., Rivero P.J. Corrosion of Cast Aluminum Alloys: A Review // Metals. - 2020. - Vol. 10, no. 10. - P. 1384. doi: 10.3390/met10101384C
- Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure /j. Esquivel, H.A. Murdoch, K.A. Darling, R.K. Gupta // Materials Research Letters. - 2018. - Vol. 6, no. 1 - P. 79-83. doi: 10.1080/21663831.2017.1396262
- Corrosion behavior of aluminum alloy in sulfur-associated petrochemical equipment H2S environment / X. Cao, Y. Lu, Z. Wang, H. Wei, L. Fan, R. Yang, W. Guo // Chemical Engineering Communications. - 2023. - Vol. 210, no. 2. - P. 233-246. doi: 10.1080/00986445.2022.2030729
- Синявский В.С., Вальков В.Д., Калинин В.Д. Коррозия и защита алюминиевых сплавов. - М.: Металлургия, 1979. - 224 с.
- Варченко Е.А., Курс М.Г. Щелевая коррозия алюминиевых сплавов и нержавеющих сталей в морской воде // ТРУДЫ ВИАМ. - 2018. - № 7 (67). - С. 96-105. doi: 10.18577/2307-6046-2018-0-7-96-105
- Corrosion characterization of Cu-based alloy in different environment / R. Soenoko, P.H. Setyarini, S. Hidayatullah, M.S. Ma'arif, F. Gapsari // Metalurgija. - 2020. - Vol. 59, no. 3. - P. 373-376. https://hrcak.srce.hr/237045
- Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment / T. Jin, W. Zhang, N. Li, X. Liu, L. Han, W. Dai // Materials. - 2019. - Vol. 12. - P. 1869-1884. doi: 10.3390/ma12111869
- Mechanical and Corrosion Behavior of Al7075 (Hybrid) Metal Matrix Composites by Two Step Stir Casting Process / M. Sambathkumar, P. Navaneethakrishnan, K. Ponappa, K.S.K. Sasikumar // Lat. Am. j. solids struct. - 2017. - Vol. 14, no. 2. - P. 243-255. doi: 10.1590/1679-78253132
Статистика
Просмотры
Аннотация - 72
PDF (Russian) - 52
PDF (English) - 4
Ссылки
- Ссылки не определены.