Циклические нагрузки и фильтрационные свойства пористых горных пород: экспериментальные исследования

  • Авторы: Кожевников Е.В1, Гладких Е.А1, Гузев М.А1, Ци Ч.2, Пантелеева А.Е1, Иванов З.Г1, Щербаков А.А1
  • Учреждения:
    1. Пермский национальный исследовательский политехнический университет
    2. Пекинский университет гражданского строительства и архитектуры
  • Выпуск: Том 25, № 1 (2025)
  • Страницы: 27-35
  • Раздел: Статьи
  • URL: https://ered.pstu.ru/index.php/geo/article/view/4468
  • DOI: https://doi.org/10.15593/2712-8008/2025.1.4
  • Цитировать

Аннотация


Изучение фильтрационных свойств пористых пород при циклическом нагружении важно для прогнозирования использования подземных резервуаров для хранения природного газа или водорода, в которых поровое давление колеблется в процессе сезонной добычи или заполнения. При циклическом нагружении проницаемость пород необратимо уменьшается, однако, несмотря на значительный объем исследований, существует пробел в понимании истинных причин этого снижения. В работе представлены результаты экспериментальных исследований влияния циклического нагружения на проницаемость пористых известняков и песчаников. Выявлен механизм гистерезиса проницаемости. Неполное восстановление проницаемости при разгрузке обусловлено наличием порога раскрытия микротрещин в породах. Также установлено влияние миграции коллоидов и мелкодисперсных частиц при измерении проницаемости образцов. Величина изменения проницаемости при циклическом всестороннем давлении обнаруживает сильную корреляцию с начальной проницаемостью. Результаты исследований показывают, что в пористых песчаниках и известняках с начальной проницаемостью ниже 50 мД ухудшение проницаемости в первую очередь связано с закрытием микротрещин. Влияние миграции коллоидов менее очевидно в менее проницаемых породах, вероятно, из-за сниженной подвижности коллоидов. Однако для пород с начальной проницаемостью более 50 мД как уплотнение, так и миграция коллоидов и мелких частиц способствуют снижению проницаемости. В более проницаемых породах подвижность коллоидов выше, что потенциально приводит к значительному снижению проницаемости до 60 %.

Полный текст

4

Об авторах

Е. В Кожевников

Пермский национальный исследовательский политехнический университет

Е. А Гладких

Пермский национальный исследовательский политехнический университет

М. А Гузев

Пермский национальный исследовательский политехнический университет

Ч. Ци

Пекинский университет гражданского строительства и архитектуры

А. Е Пантелеева

Пермский национальный исследовательский политехнический университет

З. Г Иванов

Пермский национальный исследовательский политехнический университет

А. А Щербаков

Пермский национальный исследовательский политехнический университет

Список литературы

  1. Li S., Zhang S., Xing H., Zou Y. CO2-brine-rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs. Energy, 2022, no. 256, 124608 p. doi: 10.1016/j.energy.2022.124608
  2. Chen M., Al-Maktoumi A., Izady A., Cai J., Dong Y. Use closed reservoirs for CO2 storage and heat recovery: A two-stage brine-extraction and CO2-circulation strategy. Sustainable Energy Technologies and Assessments, 2022, no. 52, 102346 p. doi: 10.1016/j.seta.2022.102346
  3. Riabokon E., Turbakov M., Kozhevnikov E., Poplygin V., Guzev M. Study of the influence of nonlinear dynamic loads on elastic modulus of carbonate reservoir rocks. Energies, 2021, vol. 14, no. 24. doi: 10.3390/en14248559
  4. Riabokon E., Kozhevnikov E., Wiercigroch M., Kozhevnikov E., Kobiakov D., Guzev M., Wiercigroch M. Nonlinear Young's Modulus of New Red Sandstone: Experimental Studies. Acta Mechanica Solida Sinica, 2021, vol. 34, no. 6, pp. 989-999. doi: 10.1007/s10338-021-00298-w
  5. Turbakov M.S., Chernyshov S.E., Ust'kachkintsev E.N. Analiz effektivnosti tekhnologii preduprezhdeniia obrazovaniia asfal'tosmoloparafinovykh otlozhenii na mestorozhdeniiakh Permskogo Prikam'ia [Efficiency analysis of technologies for prevention the formation of asphaltene tar wax-bearing deposits on the mines of Perm Prikamye]. Neftianoe khoziaistvo, 2012, no. 11, pp. 122-123.
  6. Shcherbakov A.A., Khizhniak G.P., Galkin V.I. Otsenka effektivnosti meropriiatii po intensifikatsii dobychi nefti (na primere mestorozhdenii Solikamskoi depressii) [Effectiveness evaluation of oil production stimulation measures (on the example of the Solikamsk depression fields)]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2019, no. 2, pp. 70-73.
  7. Riabokon E., Gladkikh E., Turbakov M., Kozhevnikov E., Guzev M., Popov N., Kamenev P. Effects of ultrasonic oscillations on permeability of rocks during the paraffinic oil flow. Géotechnique Letters, 2023, no. 13, pp. 1-20. doi: 10.1680/jgele.22.00137
  8. Kozhevnikov E.V., Turbakov M.S., Riabokon E.P., Gladkikh E.A. Apparent Permeability Evolution Due to Colloid Migration Under Cyclic Confining Pressure: On the Example of Porous Limestone. Transp Porous Media, 2023. doi: 10.1007/s11242-023-01979-5
  9. Turitsyna M.V. et al. Gazozhidkostnye promyvochnye smesi dlia pervichnogo vskrytiia plastov v usloviiakh anomal'no nizkikh plastovykh davlenii [Gas-liquid washover mixtures for the primary opening of productive layers in conditions of abnormally low reservoir pressure]. Neftianoe khoziaistvo, 2012, no. 9, pp. 58-59.
  10. Kluge C., Blöcher G., Hofmann H., Barnhoorn A., Schmittbuhl J., Bruhn D. The Stress‐Memory Effect of Fracture Stiffness During Cyclic Loading in Low‐Permeability Sandstone. J. Geophys. Res. Solid Earth, 2021, no. 126. doi: 10.1029/2020JB021469
  11. Li L., Yang D., Liu W., Zhang X., Zhao L., Zhu X. Experimental Study on the Porosity and Permeability Change of High-Rank Coal under Cyclic Loading and Unloading. ACS Omega, 2022, no. 7, pp. 30197-30207. doi: 10.1021/acsomega.2c03304
  12. Chen L., Zhang D., Zhang W., Guo J., Yao N., Fan G., Zhang S., Wang X., Wu P. Experimental Investigation on Post-Peak Permeability Evolution Law of Saturated Sandstone under Various Cyclic Loading–Unloading and Confining Pressure. Water (Basel), 2022, no. 14, 1773 p. doi: 10.3390/w14111773
  13. Golosov A.M., Riabokon E.P., Turbakov M.S., Kozhevnikov E.V., Poplygin V.V., Guzev M.A., Jing H. The Effect of Dynamic Loads on the Creep of Geomaterials. IUTAM: IUTAM Symposium Creep in Structures, 2023, pp. 143-150. doi: 10.1007/978-3-031-39070-8_9
  14. Civan F. Effective-Stress Coefficients of Porous Rocks Involving Shocks and Loading/Unloading Hysteresis. SPE Journal, 2021, no. 26, pp. 44-67. doi: 10.2118/200501-PA
  15. Deb D., Chakma S. Colloid and colloid-facilitated contaminant transport in subsurface ecosystem - a concise review. International Journal of Environmental Science and Technology, 2022. DOI: https://doi.org/10.1007/s13762-022-04201-z
  16. Samari Kermani M., Jafari S., Rahnama M., Raoof A. Direct pore scale numerical simulation of colloid transport and retention. Part I: Fluid flow velocity, colloid size, and pore structure effects. Adv. Water Resource, 2020, no. 144. doi: 10.1016/j.advwatres.2020.103694
  17. Kozhevnikov E.V., Turbakov M.S., Gladkikh E.A., Riabokon E.P., Poplygin V.V., Guzev M.A., Qi C., Kunitskikh A.A. Colloid Migration as a Reason for Porous Sandstone Permeability Degradation during Coreflooding. Energies (Basel), 2022, no. 15, 2845 p. doi: 10.3390/en15082845
  18. Wang C., Wang R., Huo Z., Xie E., Dahlke H.E. Colloid transport through soil and other porous media under transient flow conditions: a review. WIREs Water, 2020, no. 7. doi: 10.1002/wat2.1439
  19. Zhao D., Yang H., Wei Y., Li Z., Yang W., Shen G., Tang Z., Wang L., Li J., Chen J., Feng H. pH-responsive phenol-formaldehyde resin: aggregation mechanism and plugging science. Colloid Polym. Sci., 2023. doi: 10.1007/s00396-023-05144-8
  20. Hu C., Agostini F., Jia Y. Porosity and Permeability Evolution with Deviatoric Stress of Reservoir Sandstone: Insights from Triaxial Compression Tests and In Situ Compression CT. Geofluids, 2020, no. 2020, pp. 1-16. doi: 10.1155/2020/6611079
  21. Hu C., Agostini F., Skoczylas F., Jeannin L., Egermann P., Jia Y. Transport property evolution during hydrostatic and triaxial compression of a high porosity sandstone. European Journal of Environmental and Civil Engineering, 2020, pp. 1-14. doi: 10.1080/19648189.2020.1763854
  22. Kozhevnikov E., Riabokon E., Turbakov M. A Model of Reservoir Permeability Evolution during Oil Production. Energies (Basel), 2021, no. 14, 2695 p. doi: 10.3390/en14092695
  23. Kozhevnikov E.V., Turbakov M.S., Gladkikh E.A., Riabokon E.P., Poplygin V.V., Guzev M.A., Qi C., Jing H. Colloidal-induced permeability degradation assessment of porous media. Géotechnique Letters, 2022, no. 12, pp. 217-224. doi: 10.1680/jgele.22.00017
  24. Anyim K., Gan Q. Fault zone exploitation in geothermal reservoirs: Production optimization, permeability evolution and induced seismicity. Advances in Geo-Energy Research. 2020. no. 4, pp. 1-12. doi: 10.26804/ager.2020.01.01
  25. Lei G., Liao Q., Lin Q., Zhang L., Xue L., Chen W. Stress dependent gas-water relative permeability in gas hydrates: A theoretical model. Advances in Geo-Energy Research, 2020, no. 4, pp. 326-338. doi: 10.46690/ager.2020.03.10
  26. Kozhevnikov E., Turbakov M., Riabokon E., Gladkikh E., Guzev M., Qi C., Li X. The mechanism of porous reservoir permeability deterioration due to pore pressure decrease. Advances in Geo-Energy Research, 2024, no. 13, pp. 96-105. doi: 10.46690/ager.2024.08.04
  27. Raziperchikolaee S. Impact of stress dependence of elastic moduli and poroelastic constants on earth surface uplift due to injection. Advances in Geo-Energy Research, 2023, no. 10, pp. 56-64. doi: 10.46690/ager.2023.10.06
  28. Almutairi A., Saira S., Wang Y., Le-Hussain F. Effect of fines migration on oil recovery from carbonate rocks. Advances in Geo-Energy Research, 2023, no. 8, pp. 61-70. doi: 10.46690/ager.2023.04.06
  29. Kozhevnikov E., Turbakov M., Riabokon E., Gladkikh E., Guzev M., Panteleeva A., Ivanov Z. Rock permeability evolution during cyclic loading and colloid migration after saturation and drying. Advances in Geo-Energy Research, 2024, no. 11, pp. 208-219. doi: 10.46690/ager.2024.03.05
  30. Ramachandran V., Fogler H.S. Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores. J. Fluid Mech., 1999, no. 385, pp. 129-156. doi: 10.1017/S0022112098004121
  31. Chen C., Packman A.I., Gaillard J.F. Pore-scale analysis of permeability reduction resulting from colloid deposition. Geophys. Res. Lett., 2008, no. 35. doi: 10.1029/2007GL033077
  32. Awan F.U.R., Arif M., Iglauer S., Keshavarz A. Coal fines migration: A holistic review of influencing factors. Adv. Colloid Interface Sci., 2022, no. 301, 102595 p. doi: 10.1016/j.cis.2021.102595
  33. Pimienta L., Quintal B., Caspari E. Hydro-mechanical coupling in porous rocks: hidden dependences to the microstructure? Geophys. J. Int., 2020, no. 224, pp. 973-984. doi: 10.1093/gji/ggaa497
  34. Karev V.I., Khimulia V.V., Shevtsov N.I. Experimental Studies of the Deformation, Destruction and Filtration in Rocks: A Review. Mechanics of Solids, 2021, no. 56, pp. 613-630. doi: 10.3103/S0025654421050125
  35. Khimulia V., Karev V., Kovalenko Y., Barkov S. Changes in filtration and capacitance properties of highly porous reservoir in underground gas storage: CT-based and geomechanical modeling. Journal of Rock Mechanics and Geotechnical Engineering, 2024, no. 16, pp. 2982-2995. doi: 10.1016/j.jrmge.2023.12.015
  36. Hofmann H., Blöcher G., Milsch H., Babadagli T., Zimmermann G. Transmissivity of aligned and displaced tensile fractures in granitic rocks during cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 2016, no. 87, pp. 69-84. doi: 10.1016/j.ijrmms.2016.05.011
  37. Stanton-Yonge A., Mitchell T.M., Meredith P.G. The Hydro-Mechanical Properties of Fracture Intersections: Pressure‐Dependant Permeability and Effective Stress Law. J. Geophys. Res. Solid Earth, 2023, no. 128. doi: 10.1029/2022JB025516
  38. Ma J., Wang J. A Stress-Induced Permeability Evolution Model for Fissured Porous Media. Rock Mech. Rock Eng., 2016, no. 49, pp. 477-485. doi: 10.1007/s00603-015-0760-8
  39. Biyoghé A.T., Leroy Y.M., Pimienta L., Zimmerman R.W. Stress-strain hysteresis during hydrostatic loading of porous rocks. J. Mech. Phys. Solids, 2024, no. 193, 105861 p. doi: 10.1016/j.jmps.2024.105861
  40. Zhang J., Zhou X., Liu X., Fang L., Liu Y., Wang Y. Deformation and permeability of fractured rocks using fluid-solid coupling under loading-unloading conditions. Journal of Rock Mechanics and Geotechnical Engineering, 2024. doi: 10.1016/j.jrmge.2024.09.048
  41. Selvadurai A.P.S., Głowacki A. Permeability Hysterisis of Limestone During Isotropic Compression. Groundwater, 2008, no. 46. doi: 10.1111/j.1745-6584.2007.00390.x
  42. Kozhevnikov E.V., Turbakov M.S., Riabokon E.P., Gladkikh E.A., Poplygin V.V. Cyclic confining pressure and rock permeability: Mechanical compaction or fines migration. Heliyon, 2023, no. 9, e21600 p. doi: 10.1016/j.heliyon.2023.e21600
  43. Lim S.S., Martin C.D. Core disking and its relationship with stress magnitude for Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences, 2010, no. 47, pp. 254-264. doi: 10.1016/j.ijrmms.2009.11.007
  44. Li X., Chen Y.-F., Wei K., Hu R., Yang Z.-B. A threshold stresses-based permeability variation model for microcracked porous rocks. European Journal of Environmental and Civil Engineering, 2020, no. 24, pp. 787-813. doi: 10.1080/19648189.2018.1424650
  45. Bedrikovetsky P., Siqueira F.D., Furtado C.A., Souza A.L.S. Modified Particle Detachment Model for Colloidal Transport in Porous Media. Transp. Porous Media, 2011, no. 86, pp. 353-383. doi: 10.1007/s11242-010-9626-4

Статистика

Просмотры

Аннотация - 39

PDF (English) - 22

Ссылки

  • Ссылки не определены.

© Кожевников Е.В., Гладких Е.А., Гузев М.А., Ци Ч., Пантелеева А.Е., Иванов З.Г., Щербаков А.А., 2025

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах