Исследование модуля упругости и предела прочности известняковых коллекторов первого яруса среднего карбона

Аннотация


Для определения прочности горных пород проводятся экспериментальные исследования с нагружением образцов. Не всегда удается провести значительное количество экспериментальных исследований с нагружением. Прогнозировать прочностные показатели горных пород можно на основе литологии, пористости, плотности пород и т.д. В данном исследовании оценивалась возможность использования известных методов для прогнозирования статистического модуля Юнга известняков башкирского горизонта Москудинского месторождения. На месторождении отобрано восемь образцов горных пород, для каждого образца определены плотность, пористость и проницаемость до нагружения. В процессе нагружения определялись статический и динамический модуль Юнга и предел прочности на растяжение. Отмечено, что известные методы правильно отражают направление изменения статистического модуля Юнга от динамического значения, но для каждого географического района необходимо вводить уточняющие коэффициенты. Получена зависимость статического модуля Юнга от динамического. На основе метода наименьших квадратов выявлено, что из известных параметров до нагружения на статический модуль Юнга наибольшее влияние оказывают плотность и пористость горных пород, а на предел прочности на разрыв дополнительно влияет проницаемость. Большим пределом прочности на разрыв обладают низкопроницаемые породы. При снижении проницаемости с 5223 до 0,002 мД и пористости с 22,9 до 0,54 % предел прочности на разрыв в пластовых условиях увеличился с 44,1 до 166,2 МПа. Соответственно, в высокопроницаемых пористых породах для создания трещин при гидроразрыве пласта требуются меньшие давления.

Полный текст

7

Об авторах

В. В Поплыгин

Пермский национальный исследовательский политехнический университет

С. В Галкин

Пермский национальный исследовательский политехнический университет

Д. В Потехин

Пермский национальный исследовательский политехнический университет

М. Ван

Китайский нефтяной университет (Восточный Китай)

К. Ши

Китайский нефтяной университет (Восточный Китай)

Список литературы

  1. Marongiu-Porcu M., Economides M.J., Holditch S.A. Economic and Physical Optimization of Hydraulic Fracturing. Journal of Natural Gas Science and Engineering, 2013, no. 14, pp. 91-107. doi: 10.1016/j.jngse.2013.06.001
  2. Kong X., Shi X., Gao Q., Xu H., Ge X., Cui H.B. Experimental study on hydraulic fracture propagation behavior of horizontal well on multilayered rock. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, no. 9 (1). doi: 10.1007/s40948-023-00601-8
  3. Li T., Guo D., Zhihao T., Xijun K. Factors affecting productivity of fractured horizontal wells. In Lecture notes in electrical engineering, 2013, pp. 175-180. doi: 10.1007/978-3-642-28807-4_24
  4. Sarmadi N., Nezhad M.M. Phase-field modelling of fluid driven fracture propagation in poroelastic materials considering the impact of inertial flow within the fractures. International Journal of Rock Mechanics and Mining Sciences, 2023, no. 169, 105444 p. doi: 10.1016/j.ijrmms.2023.105444
  5. Li M., Guo J., Zhang T., Zeng X., Yang R., Gou H. Quantitative experimental study on the rule of fluid flow and its influencing factors in hydraulic fractures. Journal of Petroleum Science and Engineering, 2022, no. 214, 110505 p. doi: 10.1016/j.petrol.2022.110505
  6. Liu Z., Zhao H., Wang D., Yuan P., He Y. Establishment and application of propped hydraulic fracture conductivity theoretical model based on fracturing efficiency index. Gas Science and Engineering, 2024, no. 121, 205199 p. doi: 10.1016/j.jgsce.2023.205199
  7. Yu Y., Liu J., Li B., Sun Y. Analysis of the hydraulic fracturing mechanism and fracture propagation law with a new extended finite element model for the silty hydrate reservoir in the South China Sea. Journal of Natural Gas Science and Engineering, 2022, no. 101, 104535 p. doi: 10.1016/j.jngse.2022.104535
  8. Liu X., Zhang A., Tang Y., Wang X., Xiong J. Investigation on the influences of gravel characteristics on the hydraulic fracture propagation in the conglomerate reservoirs. Natural Gas Industry B, 2022, no. 9 (3), pp. 232-239. doi: 10.1016/j.ngib.2022.04.001
  9. Zhou Y., Yang D., Tang M. Multiple hydraulic fractures growth from a highly deviated well: A XFEM study. Journal of Petroleum Science and Engineering, 2022, no. 208, 109709 p. doi: 10.1016/j.petrol.2021.109709
  10. Zhao Y., Zhang Y., Wang C., Liu Q. Hydraulic fracturing characteristics and evaluation of fracturing effectiveness under different anisotropic angles and injection rates: An experimental investigation in absence of confining pressure. Journal of Natural Gas Science and Engineering, 2022, no. 97, 104343 p. doi: 10.1016/j.jngse.2021.104343
  11. Kar S., Chaudhuri A. Influence of flow and geomechanics boundary conditions on hydraulic fracturing pattern and evolution of permeability between the wells. Engineering Fracture Mechanics, 2024, 109949 p. doi: 10.1016/j.engfracmech.2024.109949
  12. Qiu G., Chang X., Li J., Guo Y., Zhou Z., Wang L., Wan Y., Wang X. Study on the interaction between hydraulic fracture and natural fracture under high stress. Theoretical and Applied Fracture Mechanics, 2024, no. 130, 104259 p. doi: 10.1016/j.tafmec.2024.104259
  13. Poplygln V.V., Galkin S.V. Forecast quick evaluation of the indices of the development of the oil deposits. Oil Industry, 2011, vol. 3, pp. 112-115.
  14. Poplygin V.V., Galkin S.V., Savitckii I.V., Potekhin D.V. Experimental study of hydraulic fractures in carbonate rocks under triaxial loading. Eurasian mining, 2023, no. 40 (2), pp. 28-31. doi: 10.17580/em.2023.02.06
  15. Kozhevnikov E.V., Turbakov M.S., Riabokon E.P., Gladkikh E.A., Poplygin V.V. Cyclic confining pressure and rock permeability: Mechanical compaction or fines migration. Heliyon, 2023, no. 9 (11), e21600 p. doi: 10.1016/j.heliyon.2023.e21600
  16. Poplygin V.V., Pavlovskaia E.E. Investigation of the Influence of Pressures and Proppant Mass on the Well Parameters after Hydraulic Fracturing. International Journal of Engineering, Transactions A: Basics, 2021, vol. 34, no. 4, pp. 1066-1073. doi: 10.5829/ije.2021.34.04a.33
  17. Guzev M.A., Kozhevnikov E.V., Turbakov M.S., Riabokon E.P., Poplygin V.V. Experimental investigation of the change of elastic moduli of clastic rocks under nonlinear loading. International Journal of Engineering Transactions C: Aspects, 2021, vol. 34, no. 3, pp. 750–755. doi: 10.5829/ije.2021.34.03c.21
  18. Dieng А., Poplygin V.V. Study on Application of Arps Decline Curves for Gas Production Forecasting in Senegal. International Journal of Engineering, Transactions C: Aspects, 2023, vol. 36, no. 12, pp. 2207-2213. doi: 10.5829/IJE.2023.36.12C.10
  19. Xie H., Lü J., Li C., Li M., Gao M. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. International Journal of Mining Science and Technology, 2022, no. 32, pp. 915-950. doi: 10.1016/j.ijmst.2022.05.006
  20. Liu H., Cui S., Meng Y., Chen Z., Sun H. Study on mechanical properties and wellbore stability of deep sandstone rock based on variable parameter M-C criterion. Geoenergy Science and Engineering, 2023, no. 224, 211609 p. doi: 10.1016/j.geoen.2023.211609
  21. Wang G., Wang R., Sun F., Liu B., Zhang L., Cao T., Li B. Analysis of nonlinear energy evolution in fractured limestone under uniaxial compression. Theoretical and Applied Fracture Mechanics, 2022, no. 120, 103387 p. doi: 10.1016/j.tafmec.2022.103387
  22. Liu J., Liu C., Lu G., Shi X., Li H., Liang C., Deng C. Evaluating a new method for direct testing of rock tensile strength. International Journal of Rock Mechanics and Mining Sciences, 2022, no. 160, 105258 p. doi: 10.1016/j.ijrmms.2022.105258
  23. Bahrani N., Kaiser P.K. Influence of degree of interlock on confined strength of jointed hard rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2020, no. 12, pp. 1152-70. doi: 10.1016/j.jrmge.2020.06.004
  24. Que X., Zhu Z., He Y., Niu Z. Huang, H. Strength and deformation characteristics of irregular columnar jointed rock mass: A combined experimental and theoretical study. Journal of Rock Mechanics and Geotechnical Engineering, 2023, no. 15, pp. 429–41. doi: 10.1016/j.jrmge.2022.03.007
  25. Chen T., Gao G., Liu H., Li Y., Gui Z., Zhou Y., Zhai X. Rock brittleness index inversion method with constraints of seismic and well logs via a CNN-GRU fusion network based on the spatiotemporal attention mechanism. Geoenergy Science and Engineering, 2023, no. 225, 211646 p. doi: 10.1016/j.geoen.2023.211646
  26. Wen T., Tang H., Wang Y., Ma J. Evaluation of methods for determining rock brittleness under compression. Journal of Natural Gas Science and Engineering, 2020, no. 78, 103321 p. doi: 10.1016/j.jngse.2020.103321
  27. Onalo D., Oloruntobi O., Adedigba S., Khan F., James L., Butt S. Static Young’s modulus model prediction for formation evaluation. Journal of Petroleum Science and Engineering, 2018, no. 171, pp. 394-402. doi: 10.1016/j.petrol.2018.07.020
  28. Najibi A.R., Ghafoori M., Lashkaripour G.R., Asef M.R. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. Journal of Petroleum Science and Engineering, 2015, no. 126, pp. 78-82. doi: 10.1016/j.petrol.2014.12.010
  29. Savich A.I. Generalized relations between static and dynamic indices of rock deformability. Hydrotechnical Construction, 1984, no. 18, pp. 394-400. doi: 10.1007/BF01426714
  30. Lacy L.L. Dynamic Rock Mechanics testing for optimized fracture designs. Materials of SPE Annual Technical Conference and Exhibition. San Antonio, Texas, 1997. doi: 10.2118/38716-MS
  31. Ameen M., Smart B.G.D., Somerville J.M. Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 2009, no. 26, pp. 430-44. doi: 10.1016/j.marpetgeo.2009.01.017
  32. Hassanvand M., Moradi S., Fattahi M., Zargar G., Kamari M. Estimation of rock uniaxial compressive strength for an Iranian carbonate oil reservoir: Modeling vs. artificial neural network application. Petroleum Research, 2018, no. 3, pp. 336-45. doi: 10.1016/j.ptlrs.2018.08.004
  33. Abbas A.K., Flori R.E., Alsaba M., Dahm H.H., Alkamil E.H.K. Integrated approach using core analysis and wireline measurement to estimate rock mechanical properties of the Zubair Reservoir, Southern Iraq. Journal of Petroleum Science and Engineering, 2018, no. 166, pp. 406-19. doi: 10.1016/j.petrol.2018.03.057
  34. Samani S., Uromeihy A., Claes H. et al. Linking sedimentary properties to mechanical characteristics of carbonate reservoir rock: An example from central Persian Gulf. Gas Science and Engineering, 2023, no. 113, 204954 p. doi: 10.1016/j.jgsce.2023.204954
  35. Abdallah Y., Vandamme M., Chateau C., Garnier D., Jolivet I., Onaisi A., Richard D., Zandi S.M. Linking elastic properties of various carbonate rocks to their microstructure by coupling nanoindentation and SEM-EDS. International Journal of Rock Mechanics and Mining Sciences, 2023, no. 170, 105456 p. doi: 10.1016/j.ijrmms.2023.105456
  36. Zhao C., Liu J., Lyu C., Xu D., Liang C., Li Z. Investigation on the mechanical behavior, permeability and failure modes of limestone rock under stress-seepage coupling. Engineering Failure Analysis, 2022, no. 140, 106544 p. doi: 10.1016/j.engfailanal.2022.106544
  37. Ng K., Santamarina J.C. Mechanical and hydraulic properties of carbonate rock: The critical role of porosity. Journal of Rock Mechanics and Geotechnical Engineering, 2023, no. 15, pp. 814-25. doi: 10.1016/j.jrmge.2022.07.017
  38. Rabat Á., Tomás R., Cano M. Assessing water-induced changes in tensile behaviour of porous limestones by means of uniaxial direct pull test and indirect methods. Engineering Geology, 2023, no. 313, 106962 p. doi: 10.1016/j.enggeo.2022.106962
  39. Chen Z., Shi H., Xiong C., He W., Wang H., Wang B., Dubinya N.V., Ge K.-G. Effects of mineralogical composition on uniaxial compressive strengths of sedimentary rocks. Petroleum Science, 2023, no. 20, pp. 3062-73. doi: 10.1016/j.petsci.2023.03.028
  40. Cheshomi A., Sheshde E.A. Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test. Journal of Petroleum Science and Engineering, 2013, no. 111, pp. 121-6. doi: 10.1016/j.petrol.2013.10.015
  41. Benavente D., Fort R., Gómez-Heras M. Improving uniaxial compressive strength estimation of carbonate sedimentary rocks by combining minimally invasive and non-destructive techniques. International Journal of Rock Mechanics and Mining Sciences, 2021, no. 147, 104915 p. doi: 10.1016/j.ijrmms.2021.104915
  42. Liu Z., Li D., Liu Y., Yang B., Zhang Z.-X. Prediction of uniaxial compressive strength of rock based on lithology using stacking models. Rock Mechanics Bulletin, 2023, no. 2, 100081 p. doi: 10.1016/j.rockmb.2023.100081
  43. Kovari K., Tisa A., Einstein H.H., Frankling J.A. Suggested Methods for Determining the Strength of Rock Materials in Triaxial Compression: Revision Version. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1983, no. 20, pp. 283-90. doi: 10.1016/0148-9062(83)90598-3
  44. ASTM D7012-14e1. Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM, 2014, vol. 04.09 Soil Rock D5878. doi: 10.1520/D7012-14E01
  45. Poplygin V.V. Well production after hydraulic fracturing in sandstone rocks in the north of the perm region. Eurasian Mining, 2022, no. 2, pp. 37-39. doi: 10.17580/em.2022.02.09

Статистика

Просмотры

Аннотация - 12

PDF (English) - 6

Ссылки

  • Ссылки не определены.

© Поплыгин В.В., Галкин С.В., Потехин Д.В., Ван М., Ши К., 2025

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах