Study of the elastic modulus and tensile strength for limestone reservoirs of the first tier of the middle carboniferous

Abstract


To determine the strength of rocks, experimental studies are carried out with loading of samples. It is not always possible to conduct a significant number of experimental studies on loading. It is possible to predict the strength parameters of rocks based on lithology, porosity, density of rocks, etc. The current study assessed the possibility of using known methods to predict the statistical Young's modulus of limestones of the Bashkir horizon of the Moskudinskoe deposit. Eight rock samples were selected from the field; density, porosity, and permeability before loading were determined for each sample. During the loading process, the static and dynamic Young's modulus and tensile strength were determined. It is noted that the known methods correctly reflect the direction of change in the statistical Young's modulus from the dynamic value, but for each geographical area it is necessary to introduce clarifying coefficients. The dependence of the static Young's modulus on the dynamic one is obtained. Based on the least squares method, it was revealed that the density and porosity of rocks have the most significant effect on the known parameters before loading on the static Young’s modulus, and the tensile strength is additionally affected by permeability. Low-permeability rocks have a greater tensile strength. With a decrease in permeability from 5223 to 0.002 mD and porosity from 22.9 to 0.54 %, the tensile strength in reservoir conditions increased from 44.1 to 166.2 MPa. Accordingly, in highly permeable porous rocks, lower pressures are required to create fractures during hydraulic fracturing.

Full Text

7

About the authors

V. V Poplygin

Perm National Research Polytechnic University

S. V Galkin

Perm National Research Polytechnic University

D. V Potekhin

Perm National Research Polytechnic University

M. Wang

China University of Petroleum

X. Shi

China University of Petroleum

References

  1. Marongiu-Porcu M., Economides M.J., Holditch S.A. Economic and Physical Optimization of Hydraulic Fracturing. Journal of Natural Gas Science and Engineering, 2013, no. 14, pp. 91-107. doi: 10.1016/j.jngse.2013.06.001
  2. Kong X., Shi X., Gao Q., Xu H., Ge X., Cui H.B. Experimental study on hydraulic fracture propagation behavior of horizontal well on multilayered rock. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, no. 9 (1). doi: 10.1007/s40948-023-00601-8
  3. Li T., Guo D., Zhihao T., Xijun K. Factors affecting productivity of fractured horizontal wells. In Lecture notes in electrical engineering, 2013, pp. 175-180. doi: 10.1007/978-3-642-28807-4_24
  4. Sarmadi N., Nezhad M.M. Phase-field modelling of fluid driven fracture propagation in poroelastic materials considering the impact of inertial flow within the fractures. International Journal of Rock Mechanics and Mining Sciences, 2023, no. 169, 105444 p. doi: 10.1016/j.ijrmms.2023.105444
  5. Li M., Guo J., Zhang T., Zeng X., Yang R., Gou H. Quantitative experimental study on the rule of fluid flow and its influencing factors in hydraulic fractures. Journal of Petroleum Science and Engineering, 2022, no. 214, 110505 p. doi: 10.1016/j.petrol.2022.110505
  6. Liu Z., Zhao H., Wang D., Yuan P., He Y. Establishment and application of propped hydraulic fracture conductivity theoretical model based on fracturing efficiency index. Gas Science and Engineering, 2024, no. 121, 205199 p. doi: 10.1016/j.jgsce.2023.205199
  7. Yu Y., Liu J., Li B., Sun Y. Analysis of the hydraulic fracturing mechanism and fracture propagation law with a new extended finite element model for the silty hydrate reservoir in the South China Sea. Journal of Natural Gas Science and Engineering, 2022, no. 101, 104535 p. doi: 10.1016/j.jngse.2022.104535
  8. Liu X., Zhang A., Tang Y., Wang X., Xiong J. Investigation on the influences of gravel characteristics on the hydraulic fracture propagation in the conglomerate reservoirs. Natural Gas Industry B, 2022, no. 9 (3), pp. 232-239. doi: 10.1016/j.ngib.2022.04.001
  9. Zhou Y., Yang D., Tang M. Multiple hydraulic fractures growth from a highly deviated well: A XFEM study. Journal of Petroleum Science and Engineering, 2022, no. 208, 109709 p. doi: 10.1016/j.petrol.2021.109709
  10. Zhao Y., Zhang Y., Wang C., Liu Q. Hydraulic fracturing characteristics and evaluation of fracturing effectiveness under different anisotropic angles and injection rates: An experimental investigation in absence of confining pressure. Journal of Natural Gas Science and Engineering, 2022, no. 97, 104343 p. doi: 10.1016/j.jngse.2021.104343
  11. Kar S., Chaudhuri A. Influence of flow and geomechanics boundary conditions on hydraulic fracturing pattern and evolution of permeability between the wells. Engineering Fracture Mechanics, 2024, 109949 p. doi: 10.1016/j.engfracmech.2024.109949
  12. Qiu G., Chang X., Li J., Guo Y., Zhou Z., Wang L., Wan Y., Wang X. Study on the interaction between hydraulic fracture and natural fracture under high stress. Theoretical and Applied Fracture Mechanics, 2024, no. 130, 104259 p. doi: 10.1016/j.tafmec.2024.104259
  13. Poplygln V.V., Galkin S.V. Forecast quick evaluation of the indices of the development of the oil deposits. Oil Industry, 2011, vol. 3, pp. 112-115.
  14. Poplygin V.V., Galkin S.V., Savitckii I.V., Potekhin D.V. Experimental study of hydraulic fractures in carbonate rocks under triaxial loading. Eurasian mining, 2023, no. 40 (2), pp. 28-31. doi: 10.17580/em.2023.02.06
  15. Kozhevnikov E.V., Turbakov M.S., Riabokon E.P., Gladkikh E.A., Poplygin V.V. Cyclic confining pressure and rock permeability: Mechanical compaction or fines migration. Heliyon, 2023, no. 9 (11), e21600 p. doi: 10.1016/j.heliyon.2023.e21600
  16. Poplygin V.V., Pavlovskaia E.E. Investigation of the Influence of Pressures and Proppant Mass on the Well Parameters after Hydraulic Fracturing. International Journal of Engineering, Transactions A: Basics, 2021, vol. 34, no. 4, pp. 1066-1073. doi: 10.5829/ije.2021.34.04a.33
  17. Guzev M.A., Kozhevnikov E.V., Turbakov M.S., Riabokon E.P., Poplygin V.V. Experimental investigation of the change of elastic moduli of clastic rocks under nonlinear loading. International Journal of Engineering Transactions C: Aspects, 2021, vol. 34, no. 3, pp. 750–755. doi: 10.5829/ije.2021.34.03c.21
  18. Dieng А., Poplygin V.V. Study on Application of Arps Decline Curves for Gas Production Forecasting in Senegal. International Journal of Engineering, Transactions C: Aspects, 2023, vol. 36, no. 12, pp. 2207-2213. doi: 10.5829/IJE.2023.36.12C.10
  19. Xie H., Lü J., Li C., Li M., Gao M. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. International Journal of Mining Science and Technology, 2022, no. 32, pp. 915-950. doi: 10.1016/j.ijmst.2022.05.006
  20. Liu H., Cui S., Meng Y., Chen Z., Sun H. Study on mechanical properties and wellbore stability of deep sandstone rock based on variable parameter M-C criterion. Geoenergy Science and Engineering, 2023, no. 224, 211609 p. doi: 10.1016/j.geoen.2023.211609
  21. Wang G., Wang R., Sun F., Liu B., Zhang L., Cao T., Li B. Analysis of nonlinear energy evolution in fractured limestone under uniaxial compression. Theoretical and Applied Fracture Mechanics, 2022, no. 120, 103387 p. doi: 10.1016/j.tafmec.2022.103387
  22. Liu J., Liu C., Lu G., Shi X., Li H., Liang C., Deng C. Evaluating a new method for direct testing of rock tensile strength. International Journal of Rock Mechanics and Mining Sciences, 2022, no. 160, 105258 p. doi: 10.1016/j.ijrmms.2022.105258
  23. Bahrani N., Kaiser P.K. Influence of degree of interlock on confined strength of jointed hard rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2020, no. 12, pp. 1152-70. doi: 10.1016/j.jrmge.2020.06.004
  24. Que X., Zhu Z., He Y., Niu Z. Huang, H. Strength and deformation characteristics of irregular columnar jointed rock mass: A combined experimental and theoretical study. Journal of Rock Mechanics and Geotechnical Engineering, 2023, no. 15, pp. 429–41. doi: 10.1016/j.jrmge.2022.03.007
  25. Chen T., Gao G., Liu H., Li Y., Gui Z., Zhou Y., Zhai X. Rock brittleness index inversion method with constraints of seismic and well logs via a CNN-GRU fusion network based on the spatiotemporal attention mechanism. Geoenergy Science and Engineering, 2023, no. 225, 211646 p. doi: 10.1016/j.geoen.2023.211646
  26. Wen T., Tang H., Wang Y., Ma J. Evaluation of methods for determining rock brittleness under compression. Journal of Natural Gas Science and Engineering, 2020, no. 78, 103321 p. doi: 10.1016/j.jngse.2020.103321
  27. Onalo D., Oloruntobi O., Adedigba S., Khan F., James L., Butt S. Static Young’s modulus model prediction for formation evaluation. Journal of Petroleum Science and Engineering, 2018, no. 171, pp. 394-402. doi: 10.1016/j.petrol.2018.07.020
  28. Najibi A.R., Ghafoori M., Lashkaripour G.R., Asef M.R. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. Journal of Petroleum Science and Engineering, 2015, no. 126, pp. 78-82. doi: 10.1016/j.petrol.2014.12.010
  29. Savich A.I. Generalized relations between static and dynamic indices of rock deformability. Hydrotechnical Construction, 1984, no. 18, pp. 394-400. doi: 10.1007/BF01426714
  30. Lacy L.L. Dynamic Rock Mechanics testing for optimized fracture designs. Materials of SPE Annual Technical Conference and Exhibition. San Antonio, Texas, 1997. doi: 10.2118/38716-MS
  31. Ameen M., Smart B.G.D., Somerville J.M. Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 2009, no. 26, pp. 430-44. doi: 10.1016/j.marpetgeo.2009.01.017
  32. Hassanvand M., Moradi S., Fattahi M., Zargar G., Kamari M. Estimation of rock uniaxial compressive strength for an Iranian carbonate oil reservoir: Modeling vs. artificial neural network application. Petroleum Research, 2018, no. 3, pp. 336-45. doi: 10.1016/j.ptlrs.2018.08.004
  33. Abbas A.K., Flori R.E., Alsaba M., Dahm H.H., Alkamil E.H.K. Integrated approach using core analysis and wireline measurement to estimate rock mechanical properties of the Zubair Reservoir, Southern Iraq. Journal of Petroleum Science and Engineering, 2018, no. 166, pp. 406-19. doi: 10.1016/j.petrol.2018.03.057
  34. Samani S., Uromeihy A., Claes H. et al. Linking sedimentary properties to mechanical characteristics of carbonate reservoir rock: An example from central Persian Gulf. Gas Science and Engineering, 2023, no. 113, 204954 p. doi: 10.1016/j.jgsce.2023.204954
  35. Abdallah Y., Vandamme M., Chateau C., Garnier D., Jolivet I., Onaisi A., Richard D., Zandi S.M. Linking elastic properties of various carbonate rocks to their microstructure by coupling nanoindentation and SEM-EDS. International Journal of Rock Mechanics and Mining Sciences, 2023, no. 170, 105456 p. doi: 10.1016/j.ijrmms.2023.105456
  36. Zhao C., Liu J., Lyu C., Xu D., Liang C., Li Z. Investigation on the mechanical behavior, permeability and failure modes of limestone rock under stress-seepage coupling. Engineering Failure Analysis, 2022, no. 140, 106544 p. doi: 10.1016/j.engfailanal.2022.106544
  37. Ng K., Santamarina J.C. Mechanical and hydraulic properties of carbonate rock: The critical role of porosity. Journal of Rock Mechanics and Geotechnical Engineering, 2023, no. 15, pp. 814-25. doi: 10.1016/j.jrmge.2022.07.017
  38. Rabat Á., Tomás R., Cano M. Assessing water-induced changes in tensile behaviour of porous limestones by means of uniaxial direct pull test and indirect methods. Engineering Geology, 2023, no. 313, 106962 p. doi: 10.1016/j.enggeo.2022.106962
  39. Chen Z., Shi H., Xiong C., He W., Wang H., Wang B., Dubinya N.V., Ge K.-G. Effects of mineralogical composition on uniaxial compressive strengths of sedimentary rocks. Petroleum Science, 2023, no. 20, pp. 3062-73. doi: 10.1016/j.petsci.2023.03.028
  40. Cheshomi A., Sheshde E.A. Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test. Journal of Petroleum Science and Engineering, 2013, no. 111, pp. 121-6. doi: 10.1016/j.petrol.2013.10.015
  41. Benavente D., Fort R., Gómez-Heras M. Improving uniaxial compressive strength estimation of carbonate sedimentary rocks by combining minimally invasive and non-destructive techniques. International Journal of Rock Mechanics and Mining Sciences, 2021, no. 147, 104915 p. doi: 10.1016/j.ijrmms.2021.104915
  42. Liu Z., Li D., Liu Y., Yang B., Zhang Z.-X. Prediction of uniaxial compressive strength of rock based on lithology using stacking models. Rock Mechanics Bulletin, 2023, no. 2, 100081 p. doi: 10.1016/j.rockmb.2023.100081
  43. Kovari K., Tisa A., Einstein H.H., Frankling J.A. Suggested Methods for Determining the Strength of Rock Materials in Triaxial Compression: Revision Version. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1983, no. 20, pp. 283-90. doi: 10.1016/0148-9062(83)90598-3
  44. ASTM D7012-14e1. Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM, 2014, vol. 04.09 Soil Rock D5878. doi: 10.1520/D7012-14E01
  45. Poplygin V.V. Well production after hydraulic fracturing in sandstone rocks in the north of the perm region. Eurasian Mining, 2022, no. 2, pp. 37-39. doi: 10.17580/em.2022.02.09

Statistics

Views

Abstract - 11

PDF (English) - 6

Refbacks

  • There are currently no refbacks.

Copyright (c) 2025 Poplygin V.V., Galkin S.V., Potekhin D.V., Wang M., Shi X.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies