№ 1 (2016)

Особенности решения технологических задач механики неоднородных металлических тел со структурой, трансформирующейся в ходе термосилового нагружения
Багмутов В.П., Захаров И.Н., Денисевич Д.С.

Аннотация

В статье предложено решение с единых позиций актуальной для механики, материаловедения и смежных наук проблемы поверхностного упрочнения металлического тела в условиях высокоэнергетических технологических воздействий. На примере импульсной электромеханической обработки (ЭМО) изложены постановка и анализ системы связанных задач формирования структуры и механических свойств обрабатываемого тела. Приведен алгоритм решения задачи термоупругопластичности с учетом изменения при ЭМО термо-структурного состояния металла, динамических, механических эффектов и трансформации поверхностей деформирования в пространстве интенсивности напряжений, деформаций и температуры. Рассмотрена необходимость постановки и решения специфических материаловедческих задач структурообразования, базирующихся на существующих эмпирических соотношениях. Предложена процедура согласования шагов временных сеток численного решения для корректного анализа разноскоростных взаимосвязанных процессов для теплового, структурного и механического приближений. Исследованы сходимость и устойчивость предложенного численного метода решения технологической задачи для ЭМО стали и адекватность результатов анализа известным решениям. Особое внимание уделено вопросам влияния связанности процессов и учета инерционных эффектов в условиях динамически изменяющихся тепловых, структурных и напряженно-деформационных полей в процессе ЭМО. Приведены примеры расчета распределения возникающих структурных областей и упруго-пластических деформаций и напряжений при ЭМО стальных тел, моделируемых полубесконечными областями с однородной структурой и в виде неоднородной двухслойной композиции, соответствующей образцам с упрочненным поверхностным слоем. Сопоставление полученных результатов позволило выявить и описать тонкие эффекты в распределении напряжений и деформаций в неоднородных телах при трансформации структуры в процессе ЭМО.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):5-25
views
Применение метода плоского бимформинга к идентификации вращающихся звуковых мод
Берсенев Ю.В., Вискова Т.А., Беляев И.В., Пальчиковский В.В., Кустов О.Ю., Ершов В.В., Бурдаков Р.В.

Аннотация

Геометрические и механические параметры многослойных панелей, используемых как звукопоглощающие конструкции в каналах авиационного двигателя, определяются требованиями к акустическому импедансу этих конструкций. Данные требования формулируются на основе анализа распространения звуковых мод в каналах, в частности в канале воздухозаборника. Как следствие, знание модального состава звукового поля в канале воздухозаборника авиационного двигателя является необходимым при выборе геометрических и механических параметров (толщина слоев, размер и форма ячеек, процент перфорации, материал конструкций и заполнителя, тип клея и т.д.) звукопоглощающих конструкций. Экспериментальное определение модального состава может производиться с помощью микрофонной решетки, установленной внутри канала или вне него. В данной работе для измерения вращающихся звуковых мод применялась плоская решетка микрофонов, расположенная вне канала воздухозаборника, а полученные данные обрабатывались с помощью метода бимформинга. Вращающиеся моды создавались на специально разработанном генераторе мод на основе воздухозаборника авиационного двигателя ПС-90; звук создавался с помощью 34 акустических драйверов JBL 2451H, расположенных по окружности в основании установки. При проведении испытаний поток отсутствовал. Эксперименты были выполнены в новой заглушенной камере лаборатории механизмов генерации шума и модального анализа Пермского национального исследовательского политехнического университета. Результаты испытаний показали, что метод плоского бимформинга локализует вращающуюся звуковую моду в точке, положение которой зависит от номера моды (это явление во многом аналогично результатам применения метода плоского бимформинга к шуму винта или открытого ротора). Был сделан вывод, что измерения вращающихся мод, излучаемых из воздухозаборника, с помощью метода бимформинга в принципе позволяют определить модальный состав шума в канале, но практическая реализуемость этого метода для натурного авиационного двигателя требует специального исследования. Факт локализации вращающейся моды в точке необходимо учитывать при анализе источников шума авиационного двигателя, измеренных с помощью метода бимформинга.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):26-38
views
Вариант теории термовязкопластичности
Бондарь В.С., Даншин В.В., Кондратенко А.А.

Аннотация

Рассматриваются основные положения и уравнения теории термовязкопластичности (неупругости), относящейся к классу теорий течения при комбинированном упрочнении. Тензор скоростей деформаций представляется в виде суммы тензоров скоростей упругой и неупругой деформаций. При этом следует отметить, что в данной теории нет условного разделения неупругой деформации на деформации пластичности и ползучести. Упругая деформация следует обобщенному закону Гука, распространенному на неизотермическое нагружение. Вводится поверхность нагружения, которая изотропно расширяется или сужается и смещается в процессе нагружения. Текущая поверхность нагружения определяется процессом нагружения, изменяющимся во времени. Для радиуса поверхности нагружения формулируется эволюционное уравнение, учитывающее дополнительное изотропное упрочнение при непропорциональном (сложном) нагружении, а также обобщенное на неизотермическое нагружение и процессы возврата механических свойств при отжиге. В качестве параметра, характеризующего меру сложности процесса нагружения, принимается параметр Кадашевича-Мосолова, соответствующий углу между векторами скоростей деформаций и напряжений. Смещение поверхности нагружения описывается на основе модели Новожилова-Шабоши, подразумевающей, что полное смещение есть сумма смещений, для каждого из которых имеет место свое эволюционное уравнение. Проведенный анализ петли пластического гистерезиса позволил выделить три типа микронапряжений (смещений) и сформулировать три типа эволюционных уравнений, обобщенных на неизотермическое нагружение и процессы снятия микронапряжений при отжиге. Для определения тензора скоростей неупругой деформации используется ассоциированный (градиентальный) закон течения. Для жестких и мягких режимов нагружения получены выражения для определения скорости накопленной неупругой деформации. Сформулированы условия упругого и неупругого состояний. Для описания нелинейных процессов накопления повреждений вводятся кинетические уравнения накопления повреждений, где в качестве энергии, расходуемой на создание повреждений в материале, принимается энергия, равная работе микронапряжений второго типа на поле неупругих деформаций. Здесь эти кинетические уравнения обобщены на неизотермическое нагружение и процессы охрупчивания и залечивания повреждений. Выделяются материальные функции, замыкающие вариант теории, формулируется базовый эксперимент и метод идентификации материальных функций. Приводится описание верификации вариантов теории термовязкопластичности на широком спектре конструкционных сталей и сплавов и программ экспериментальных исследований.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):39-56
views
ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ТРАНСВЕРСАЛЬНО-ИЗОТРОПНОГО ВОЛОКОННОГО КОНТУРА ПО ИЗОТРОПНЫМ СВОЙСТВАМ КОМПОНЕНТОВ
Гаспарян А.Г., Есипенко И.А.

Аннотация

Волоконный оптический гироскоп представляет собой сложную оптико-электронную систему, которая состоит из чувствительного элемента и блока электроники. Чувствительный элемент состоит из бескаркасного волоконного контура и интегрально-оптического фазового модулятора. В настоящей статье объектом исследования является конструкция бескаркасного волоконного контура. В процессе эксплуатации гироскоп подвержен воздействию внешних факторов, влияние которых необходимо минимизировать. Обозначено, что резонанс в конструкции является одной из причин возникновения погрешностей показаний гироскопа при эксплуатации. При разработке волоконно-оптических гироскопов предлагается прогнозировать поведение волоконного контура в рабочем диапазоне частот. Обозначена проблема больших затрат вычислительных ресурсов в связи со сложным внутренним строением волоконного контура. Предложен переход от многокомпонентной структуры волоконного контура к трансверсально-изотропному однородному материалу. Рассмотрена модель элементарного объема как ячейки периодической структуры волоконного контура. Поставлены четыре краевые статические задачи теории упругости о нахождении напряженно-деформированного состояния элементарного объема. Для решения задач использован метод конечных элементов, реализованный в программном комплексе Creo Simulate 2.0. Определены пять независимых упругих констант транстропного материала в диапазоне температур эксплуатации волоконно-оптического гироскопа. Проведен натурный эксперимент по нахождению собственных частот колебаний волоконного контура на «свободном» подвесе. Методом конечных элементов найдены собственные частоты и формы колебаний волоконного контура с трансверсально-изотропной моделью материала. Для задания свойств материала использовалась цилиндрическая система координат. Сравнение результатов модального анализа и экспериментальных данных свидетельствует о возможности применения найденных упругих констант для решении задач динамики деформируемого твердого тела.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):57-67
views
Исследование эволюции источников тепла в процессе упругопластического деформирования титанового сплава ОТ4-0 на основе контактных и бесконтактных измерений
Изюмова А.Ю., Вшивков А.Н., Прохоров А.Е., Плехов О.А., Venkatraman B.

Аннотация

Работа посвящена исследованию эволюции источников тепла в процессе квазистатического растяжения образцов из титанового сплава ОТ4-0 с помощью контактного датчика потока тепла и метода инфракрасной термографии. Целью исследования является оценка возможностей двух различных типов измерений (контактного и бесконтактного) для мониторинга состояния материала по изменению величины источников тепла, регистрируемому на поверхности образцов в процессе их деформирования. Явными преимуществами метода инфракрасной термографии являются возможность бесконтактного измерения температуры поверхности материала в различных условиях и расчет поля мощности источников тепла. Несмотря на это, данный метод обладает рядом ограничений, связанных с излучательной способностью исследуемого материала, зашумлением сигнала, вызванным влиянием внешних факторов, условиями теплообмена образца и окружающей среды, а также ограничением по точности определения мощности источников тепла. Указанные факторы не позволяют использовать метод инфракрасной термографии в эксплуатационных условиях материалов и конструкций для определения их энергетического состояния. В данной работе сделана попытка верифицировать величину рассчитываемой на основе метода инфракрасной термографии мощности источников тепла на поверхности материала, возникающих при его деформировании. Для этого использовался разработанный авторами контактный датчик потока тепла, устройство которого основано на эффекте Зеебека. В результате по данным контактного датчика и метода инфракрасной термографии были получены зависимости величины теплового потока, возникающего в процессе упругопластического деформирования материала, от времени эксперимента. Удовлетворительное соответствие данных позволяет говорить о возможности использования контактных и бесконтактных измерений как в комплексе - для верификации величины источников тепла, получения их распределения на поверхности материала и определения условий теплообмена образца с окружающей средой, так и по отдельности - в качестве экспресс-методики оценки состояния материала на различных этапах нагружения.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):68-81
views
Хаотическая динамика гибких прямоугольных в плане панелей в поле белого шума
Крылова Е.Ю., Яковлева Т.В., Баженов В.Г.

Аннотация

Исследуется влияние на характер колебаний гибкой прямоугольной в плане панели интенсивности внешнего поля белого шума, нормального к поверхности панели. Математическая модель колебаний панели построена на основании гипотез Кирхгофа с учетом диссипации. Геометрическая нелинейность учтена в форме Кармана. Рассматривается прямоугольная панель с отношением размеров в плане под действием внешней продольной нагрузки. К уравнениям движения присоединяются неоднородные граничные условия опирания на гибкие несжимаемые (нерастяжимые) ребра и нулевые начальные условия. Полученная система нелинейных дифференциальных уравнений в частных производных сводится к нелинейной системе обыкновенных дифференциальных уравнений методом конечных разностей по пространственным переменным. По времени система решается методом Рунге-Кутта четвертого порядка точности. Количество степеней свободы механической системы в эксперименте равняется 196. Для анализа получаемых результатов в работе, помимо Фурье-анализа, применяется аппарат вейвлет-преобразований, что позволяет более детально изучить локальные временные особенности сигналов. Эксперимент выявил диапазон амплитуд внешней продольной нагрузки, где поведение рассматриваемой динамической системы не устойчиво. Для данного диапазона амплитуд продольной нагрузки было проведено исследование влияния поля белого шума различной интенсивности на характер колебаний панели. Проведенные численные эксперименты показывают, что поле белого шума способно уменьшать амплитуду колебаний панели, сокращать количество частот в спектре колебаний системы и переводить несимметричные формы колебаний к симметричным. Таким образом, можно утверждать, что воздействие на динамическую систему шумовым полем может приводить к более безопасным колебательным режимам. То есть с помощью белого шума можно управлять характером колебаний механической системы.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):82-92
views
Математическое моделирование и экспериментальное исследование формирования и релаксации остаточных напряжений в плоских образцах из сплава ЭП742 после ультразвукового упрочнения в условиях высокотемпературной ползучести
Радченко В.П., Саушкин М.Н., Бочкова Т.И.

Аннотация

Выполнено комплексное расчетно-экспериментальное исследование остаточных напряжений в призматических образцах из сплава ЭП742 после ультразвукового упрочнения и температурной выдержки без нагрузки при температуре 650 °С в течение 100 часов. Выяснены закономерности распределения остаточных напряжений по толщине поверхностно-упрочненного слоя. Экспериментально установлено, что обработка ультразвуковым упрочнением образцов вызывает появление в поверхностном слое сжимающих остаточных напряжений, максимум которых наблюдается в подповерхностном слое, а спад - к поверхности. При температурной выдержке происходит релаксация наведенных сжимающих остаточных напряжений, уровень остаточных напряжений уменьшается в 1,4-1,6 раз и происходит смещение их максимума вглубь образца, однако толщина сжатого слоя сохраняется на уровне 200 мкм. Разработана математическая модель формирования остаточных напряжений в призматических образцах после поверхностного пластического деформирования и их релаксации в условиях высокотемпературной ползучести материала. Поскольку упрочненный слой достаточно тонкий, то для призматического образца в качестве модельного объекта использовано упрочненное полупространство. Для решения задачи введена декартова система координат: плоскость x 0 y совмещена с упрочненной поверхностью полупространства, а ось 0 z направлена по глубине упрочненного слоя. Введены гипотезы плоских сечений, параллельных плоскостям x 0 y и y 0 z . Теоретически показано, что релаксация остаточных напряжений может быть связана с ползучестью материала при температуре испытаний в условиях неоднородного напряженно-деформированного состояния. Задача ползучести упрочненного полупространства решена численно. Выполнена обстоятельная экспериментальная проверка математической модели при нормальной температуре и в условиях высокотемпературной ползучести при четырех режимах ультразвукового упрочнения, отличающихся длительностью ультразвуковых колебаний в зоне обрабатываемой микрошариками поверхности детали. Наблюдается удовлетворительное соответствие расчетных и экспериментальных данных.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):93-112
views
О деформационном упрочнении чугуна при пропорциональном и сложном нагружении
Рычков Б.А., Гончарова И.В., Волков А.В.

Аннотация

Моделируется поведение тонкостенных трубчатых образцов чугуна СЧ 15-32 (экспериментальные данные для которого получены В.М. Жигалкиным и О.М. Усольцевой) при нагружении растяжением с внутренним давлением. По экспериментальным диаграммам осевого и окружного растяжений установлено, что данный материал является ортотропным. Рассмотрено пропорциональное и сложное нагружение. Осуществленное в опыте двухосное растяжение соответствовало состоянию чистого сдвига (характеризуемого параметром Лоде-Надаи), когда преобладало либо осевое, либо окружное напряжение. Траектория сложного нагружения задавалась в виде двухзвенной ломаной в пространстве напряжений; первому звену траектории соответствовало осевое растяжение, второму - окружное растяжение либо при постоянном осевом напряжении, либо при определенном отношении приращения осевого напряжения к приращению окружного напряжения. В последнем случае производилась промежуточная полная разгрузка, затем сложное нагружение повторялось при задании большей величины первого звена траектории. С учетом начальной упругой анизотропии определены пределы текучести, которые находились по достаточно малому допуску на остаточную максимальную главную деформацию. Деформационное упрочнение отображается на основе концепции скольжения и разрыхления. Показано, что вследствие исходной анизотропии материала реализуется механизм плоскопластической деформации в виде (идеализированных) скольжений по площадкам действия главных касательных напряжений. Очередность «включения в работу» этих площадок характеризуется уровнем и видом напряженного состояния. Для максимальной главной чисто пластической составляющей неупругой деформации предложена единая (не зависящая от вида напряженного состояния) зависимость от главных напряжений. Данная зависимость представляет собой монотонно растущую функцию, она отображает смену площадок скольжения при изменении вида напряженного состояния. С пластической деформацией связана деформация разрыхления, которая, в соответствии с гипотезой В.В.Новожилова, считается происходящей равномерно и одновременно во всех направлениях. Из сопоставления продольной и поперечной деформаций при одноосном растяжении определен коэффициент разрыхления. Взаимодействие локальных скольжений и разрыхления проявилось в том, что во всех случаях растяжения за пределы упругости поперечная деформация оставалась близкой к соответствующему упругому ее значению. Выявленные особенности деформационного упрочнения чугуна отображаются предлагаемыми определяющими соотношениями в виде единых зависимостей между конечными значениями напряжений и деформаций как при простом, так и при сложном нагружении.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):113-128
views
Фрактальный анализ кривых деформирования дисперсно-армированных мелкозернистых бетонов при сжатии
Селяев В.П., Низина Т.А., Балыков А.С., Низин Д.Р., Балбалин А.В.

Аннотация

Изложена методика определения фрактальной размерности кривых деформирования на основе метода минимального покрытия, позволяющая получать интегральную количественную оценку процесса разрушения строительных композитов при сжатии и определять положение параметрической точки кривой разрушения. Проведено сравнение предлагаемого метода с алгоритмами определения показателя Херста и фрактальной размерности методом покрытия квадратами. Показано преимущество методики, основанной на определении фрактальной размерности с помощью метода минимального покрытия. Для проведения механических испытаний составов мелкозернистых дисперсно-армированных бетонов использовался программно-аппаратный комплекс WilleGeotechnik®, дополнительно оборудованный климатической камерой с возможностью регулирования температуры (от -40 до +100 °С) и влажности (от 10 до 96 %) в процессе нагружения. Изменение напряжений и деформаций образцов в процессе нагружения фиксировалось с шагом 0,01 с. В качестве основных компонентов дисперсно-армированных мелкозернистых бетонов использовались: цемент класса ЦЕМ I 42,5Б, речной песок, микрокремнезем конденсированный уплотненный МКУ-85, поликарбоксилатный суперпластификатор Melflux 1641 F. Дисперсное армирование бетонов обеспечивалось раздельным введением трех видов фибр: полипропиленовое мультифиламентное волокно, полиакрилонитрильное синтетическое волокно FibARM Fiber WВ и модифицированная астраленами базальтовая микрофибра «Астрофлекс-МБМ». Определены значения индексов фрактальности и фрактальной размерности прироста напряжений и деформаций кривых деформирования мелкозернистого бетона с помощью метода минимального покрытия. На основе фрактального анализа временных рядов определено положение и окрестности точки перехода бетонного образца из состояния покоя в состояние выраженного тренда. Выявлено изменение положения параметрической точки и значений фрактальных размерностей в зависимости от вида применяемой фибры. Установлено, что введение 1%-го полипропиленового мультифиламентного волокна или 5%-й модифицированной астраленами базальтовой микрофибры «Астрофлекс-МБМ» приводит к существенному повышению первого «критического» уровня соответственно до 54 и 47 % как при анализе прироста напряжений и деформаций по сравнению с 19 и 28 % для составов, содержащих 1,5%-го полиакрилонитрильного синтетического волокна. Предлагаемая методика фрактального анализа кривых деформирования на основе метода минимального покрытия позволяет получить ценную информацию о процессе разрушения композиционных материалов различной природы.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):129-146
views
Конечно-элементное моделирование термодеформационных процессов при изготовлении высокопрочной проволоки
Шаврин О.И., Скворцов А.Н.

Аннотация

Рассматриваются вопросы конечно-элементного моделирования термодеформационных процессов при изготовлении высокопрочной проволоки. Объектом исследования является технология термодеформационной обработки (ТДО). Технологическая модель процесса включает скоростной нагрев проволоки до температур, превышающих температуру Ас3, гомогенизирующую выдержку, деформацию заготовки, перемещение деформированной заготовки при контрольно-стабилизированной температуре, обеспечивающей формирование полигонизированной структуры, в зону охлаждения. На базе содержательной функциональной модели проведено конечно-элементное моделирование процессов индукционного нагрева и формообразования проволоки при волочении и обжатии обкаткой в трехроликовой обкатной головке. Тепловое поле при индукционном нагреве по поперечному сечению неоднородно, зависит от диаметра проволоки, скорости перемещения через индуктор, частоты индукционного нагрева. При волочении наблюдается сложное напряженное состояние, процесс осесимметричен, эквивалентные пластические деформации незначительно отличаются от деформации, соответствующей расчетной степени деформации, показано место возможного разрыва после выхода из волоки. При обкатке эквивалентные пластические деформации значительно отличаются от деформации, соответствующей расчетной по обжатию степени деформации из-за тангенциальной составляющей. Результатом использования формообразования в трехроликовой обкатной головке может быть более значительное упрочнение материала, чем предполагалось при разработке технологии исходя из заданной степени деформации (более значительное деформационное упрочнение).
Вестник Пермского национального исследовательского политехнического университета. Механика. 2016;(1):147-165
views

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах