Vol 20, No 3 (2018)

ARTICLES
THE CAUSES OF PATHOLOGICAL WEAR OF THE BANDAGE IN THE BANDAGE OF THE WHEEL OF LOKOMOTIVA-TORMOZNAYA KOLODKA SYSTEM AND THE POSSIBILITY OF HIS EXCEPTION
Klimov A.A., Struchkov A.V., Bondarik V.B.

Abstract

As a result of these studies was an experimental locomotive brake pads microstructure consisting of ferrite and graphite, which easily and inexpensively can be obtained in the conditions of the manufacturer and conditions of repair facilities and comparative performance tests. The hardness varies from 100NV to 600НВ. Hardness is dependent upon the balance of graphite and of cementite in the structure, which is difficult to optimize, because any technological changes in the manufacturing process can dramatically change that balance. Based on the structural analysis of the investigated standard locomotive brake pads, the authors determined that the presence of all structural components under standard, their balance may vary within wide limits. This is confirmed by the hardness measurements on the surfaces of new and worn pads. The work contains the analysis of the results of the study of pathologic wear in the tribological pair "wheel tread of the locomotive - brake pad" derived from performance tests, the locomotive brake pads three groups - standard of low hardness, standard increased hardness and experimental (with the structure of ferrite-graphite) at the three locomotives freight traffic on the stretch of station Achinsk Krasnoyarsk railway. Analysis of the research material allowed to distinguish three classification groups gain metal bands on the brake shoes for thickness and structure. A significant number of pads have traces of abnormal wear on the tires of the wheels (fat), the influence of the structure of the cast iron pads on the magnitude of a gain. The suggested direction of reducing the gain by transforming the standard structure of cast iron in ferrite-graphite.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):5-11
views
Application of high-frequency induction heating for increasing crack resistance in the welding of hardening steels
Orlov A.S., Pomerantsev A.S., Sizintsev S.V.

Abstract

The purpose of this work is to investigate the feasibility of implementing such a variant of electric arc welding with heating, in which heat from the source of heating is introduced coaxially with the welding source and added together with the heat of the welding arc. The paper presents an electric arc welding method with heating, in which the source of heating is a high-frequency electromagnetic field generated by a multi-turn inductor coaxially fixed on a welding torch. The local heating zone of the welded article is shown from the action of the high-frequency induction source, as well as the heating circuit of the workpiece to be welded. Experimental studies are conducted to determine the effectiveness of the proposed variant of the welding technology using high-frequency heating as a means of increasing the resistance to cold cracking in the welding of hardening steels for automatic submerged arc welding and argon-arc welding by a non-consumable electrode. For this purpose, the compounds were welded in the form of a technological sample. The results of experimental studies confirming the effectiveness of high-frequency induction heating for increasing the resistance to the formation of cold cracks in the welding of hardening articles are presented.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):12-17
views
The using of resistometry to study the kinetics of atomic ordering in an Cu-80 wt. % Au alloy
Generalova K.N., Glukhov A.V., Volkov A.Y.

Abstract

High-precision navigation devices are used in modern aircraft construction to transmit weak signals with high reliability. Previous studies of the characteristics of sliding contacts made of noble metals showed that the contact pair (CP) brush / ring has the highest performance if it is made of gold-copper alloys near equiatomic composition. Alloys of gold and copper are capable, with appropriate heat treatment, to acquire an ordered atomic structure characterized by a strictly defined arrangement of atoms of each kind in the crystal lattice. The ordering process is carried out by the diffusion movement of atoms, so the formation of an ordered structure is determined by the temperature-time processing conditions. Earlier it was shown that the high physical and mechanical characteristics of ordered gold-copper alloys ensure stable operation of the CP. In the present study, the kinetics of the formation of an ordered structure of the L10 type in a gold-copper alloy of a nonstoichiometric composition (Cu-80 wt. % Au) has been studied by resistometry. The results obtained in measuring the electrical resistivity during heating and cooling of samples in different initial states (disordered by quenching or plastic deformation) are described. The high thermal stability of the ordered CuAuII phase at low temperatures was revealed. In turn, it was established that the CuAuI phase is very rapidly rearranged in CuAuII when heated above 350 °C. It is confirmed that the preliminary plastic deformation does not lead to an increase in the rate of atomic ordering in comparison with the quenched state. As a result of prolonged heat treatment, an ordered state with a resistivity ρ = 7.71·10-8 Om m was obtained, which is significantly lower than the data given in the literature for the alloy of the chosen composition.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):18-28
views
The temperature correlation parameters of gas-vortex stabilization of metal-cutting plasma torches
Anakhov S.V., Pyckin Y.A., Matushkin A.V.

Abstract

The results of the efficiency studies of gas-temperature stabilization systems for metal-cutting plasmatrons are presented. Due to the fact that currently the introduction of automated metal cutting systems usually involves multi-functional use of several technologies, the development of universal or competitive in a wider range of technologies can be a serious factor in the search for the most effective metal cutting technology. Such technology can be modern methods of high-precision plasma cutting, which include appeared in recent years under the name "compressed", "accurate" or "narrow-jet" plasma development of manufacturers such as Kjellberg, MesserGreisheim, HyperTherm. Improving the efficiency of individual gaseous-vortex stabilization may be an important factor when choosing plasma cutting, optimum cutting technology of metals. It is noted that the method of efficiency evaluation developed by the authors should be based on the calculation of the uniformity of the gas flow velocity distribution over the section of the gas-heating path of the plasma torch. Various (simplified and accurate) estimation methods are proposed. The results of calculation of the velocity distribution in the control section for different modifications of plasma torches are presented. Calculations are made on the "cold" model gas flow and its heating by a plasma arc. It is shown that when heated by a plasma arc, the flow rate at the inlet to the nozzle channel of the plasma torch and the degree of irregularity of the velocity distribution in the control section increase. By methods of statistical analysis the main parameter of the effectiveness evaluation of individual gaseous-vortex stabilization was chosen - criterion for the velocity variations. Demonstrated the advantages of the new upgraded torches, including working on technology narrow jet plasma, from the point of view of the effectiveness of individual gaseous-vortex stabilization.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):29-37
views
Penetration control for welding on analytical mathematical model of heat distribution
Sidorov V.P., Melzitdinova A.V.

Abstract

The paper describes the technique of automatic control of the welding process on the analytical model of heat propagation into the product. The technique is applicable for argon-arc welding of double-sided butt joints without edge preparation. The essence of this technique is to determine two coefficients of the structural model of a point heat source on the surface of a plate. To determine the coefficients, it is necessary to measure the temperature of the body at two points with their known coordinates. The data on standard values of the penetration and the weld width are taken as these points. The solution of the system of equations for the known coefficients is described graphically by constructing isolines for the penetration and the weld width. For control, the concept of the specific effective power per 1 A of arc current is used. It makes not to measure the effective welding power. The current and the welding speed are measured, and one parameter is used as the control parameter. In this case, the requirements to the accuracy of the control parameter are significantly reduced. An example of using the proposed technique for argon-arc welding of the first layer of a double-sided weld is given. The proposed method eliminates the inaccuracies of the mathematical model associated with the assumption that there is no temperature dependence of the thermophysical coefficients. The control method provides a significant reduction of the experiments to determine the coefficients of the mathematic dependence of the penetration against the welding parameters, to increase the accuracy of the penetration control by reducing the dependence of the coefficients determined experimentally on the welding parameters, and to take into account the influence of the temperature and the thickness of the welded parts on the penetration without additional experiments.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):38-44
views
CREATION OF MODELS OF THE SOLUTION OF THERMAL PROBLEMS OF ELECTRON BEAM WELDING WITH FLUCTUATIONS OF THE BEAM
Olshanskaya T.V., Fedoseeva E.M.

Abstract

In operation the mathematical models developed for the solution of thermal problems in case of electron beam bonding with oscillations of a beam are provided. For creation of thermal models oscillations of a beam along a joint, across and x-shaped to paths are selected. Heat source for welding with oscillations of an electron beam along a joint, across and x-shaped with the given amplitude and taking into account extension of radius of a source of heat on a surface can be provided to paths as combined, continuously acting during a certain interval of time. Models are constructed by an analytical method on the basis of the decision of the task of heat conduction with use of Green functions - method of sources. At the heart of creation of models for welding with oscillations of an electron beam introduction of a combined source of heat consisting from surface and operating on depth is used. The general approach in case of creation of models is that the source operating on a surface increases by r radius concerning the sizes of the second source. The source distributed on depth is located at some distance from a surface on axis Z. For simulation of longitudinal and cross oscillations of a beam the sizes of a combined source of heat increase linearly on the appropriate axes by value of a vibration amplitude. In model superposition of longitudinal and cross oscillations is applied to a x-shaped path. The developed thermal model of electron beam bonding with a x-shaped path can be used for the decision of thermal tasks in relation to circle and elliptic scanning. Such submission of the form of a heat source allows to transfer more precisely the form of pro-melt in case of electron beam bonding with oscillations of a beam.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):45-54
views
FORMATION OF STRUCTURE AND PROPERTIES OF STEEL 04Сr18Ni9 AT ADDITIVE PRODUCTION OF TRAININGS
Shchitsyn Y.D., Terentyev S.A., Neubybin S.D., Artemov A.O., Belinin D.S.

Abstract

Additive technologies (AT) or layer-by-layer synthesis technologies are one of the most dynamically developing areas of "digital" production. The common problem of additive technologies is to ensure the proper microstructure of the synthesized material and eliminate defects. The use of a filler wire as a working material allows to get rid of the problems associated with the low productivity of existing methods, the high cost of the equipment used, the limited types of materials used due to the use of powder systems. The paper presents the results of studying the features of the formation of the structure and properties of 04Cr18Ni9 steel in additive processes, namely, in the case of СМТ (Сold Меtal Тransfer) surfacing, plasma surfacing with reverse polarity current and plasma surfacing with a consumable electrode (Plasma MIG). Products made of stainless chromium-nickel steels are widely used in a wide variety of industries. The main problem with additive technologies is to ensure the properties of laminates no lower than those obtained by traditional methods. Typical defects of laminates obtained by surfacing are increased porosity, nonmetallic inclusions, reduced plasticity, and for high-alloy steels, loss of special properties. A comparison is made between the structure and mechanical characteristics of materials obtained by SMT surfacing, plasma surfacing by reverse polarity current, and plasma surfacing by a consumable electrode. It is shown that the use of a hybrid method of plasma surfacing by a consumable electrode is promising for additive technologies. It is established that the mechanical characteristics of samples made of 04Х18Н9 steel obtained by surfacing are not lower than for steel of similar composition in the deformed state.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):55-62
views
36NKhTYu alloy to EP517 steel dissimilar welded joints structural strength increase due to optimization of weld seam dimensions
Terentyev E.V., Marchenkov A.Y., Sliva A.P., Goncharov A.L.

Abstract

The results of weld seams impact research on dissimilar EP517 steel to 36NKhTYu alloy weld joints strength properties are performed. The electron-beam welding technology features of 6 mm thick plates made of specified materials are described. The results of metallographic studies and mechanical tests of weld joints with various seam widths are presented, which showed that the structure and properties of weld metal do not depend on seam width. Herewith, the tension tests demonstrate a higher ultimate stress of welded joints in comparison with the ultimate stress of weld metal. Moreover, the smaller the joint width, the stronger the welded joint, that is explained by contact hardening phenomenon. In addition, the use of heat treatment after welding allows to further increase the strength properties of the weld joint due to the strengthening γ'-phase formation in weld metal and heat affected zone of the 36NKhTYu alloy. The possibility of increasing the ultimate stress of weld joints up to 93% of the EP517 steel ultimate stress value due to reduction of the seam width.and subsequent heat treatment application is shown. A method of yield stress and ultimate stress evaluation of welded materials and their weld joints by indentation test is developed.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):63-72
views
Identification of potassium fluorophylate of the tested batch for compliance with the standard
Yudin M.V., Ignatova A.M., Ignatov M.N.

Abstract

To develop pilot production into serial production, it is necessary to identify the material-science characteristics of the potassium-phlogopite material for compliance with the technological regulations. For this, raster electron microscopy was used with X-ray spectral microprobe analysis, petrographic, X-ray phase and silicate analyzes. In the course of petrographic analysis, refractive indices, the nature of cleavage and the general interference of light were determined. Additionally, the morphometric parameters of the structural components were evaluated by the image analysis method. As a result, the following attributes of potassium fluorophilic acid have been identified: refractive indices equal to 1.597 and 1.550; perfect cleavage - ((001), parallel bands along the grains, interference of 2-3 orders of magnitude (multisyllabic color transitions on the photo), change in color when moving the microscope stage. It is established that the morphometric characteristics of the components vary in size, but the proportional structure of the components is preserved, as evidenced by the stable value of the sphericity coefficient. Using the methods of scanning electron microscopy and microprobe X-ray spectral analysis, the structure of the microstructure and the elemental composition of the individual constituents were established. A joint analysis of X-ray diffraction and silicate analysis revealed that the composition of sample material, %: SiO2 - 39.00-41.10; TiO2 - 0.04-0.06; Al2O3 - 9.00-9.70; Fe2O3 (total) - 0.05-0.15; P2O5 no more than 0,01, Na2O - 0,04-0,47; K2O - 7.20-8.90; CaO - 0.80-3.20; MgO - 27.2-29.2; S (sulfur sulfide) not more than 0.01; SO3 (sulfur sulfate) - 0.07-0.20; CO2 - 0.11-0.31, F - 9.35-11.67. Phase composition, wt. %: fluorophlogopite - 86.7-89.9 %, accompanying phases (ortho- and clinopyroxenes, humite mineral phases and plagioclase) - 5.0-7.0 %, glass-phase - 5.1-7.2 %. Samples of potassium fluorophlogopite have been identified meet the requirements of the technological regulations of the enterprise and correspond to TU 5714-489-05785388.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):73-81
views
Peculiar properties of the equipment maintenance and repair approaches in continuous production
Ivanov V.A., Feshchenko A.A.

Abstract

Continuous production process has a number of peculiar properties that affect the organization of technological equipment maintenance and repair aimed to the most efficient using of the allotted time for service, that is, the required number of equipment maintenance and repair with the required quality. Reducing the time between shutdown and start-up of the production process without loss of work quality and quantity helps to reduce the lost profit as an unprocessed products during downtime. The purpose of the work is to conduct an analytical review of maintenance and repair of technological equipment approaches in continuous production taking into account its features. The analysis of the organization features of continuous production was carried out and three organizational approaches of the equipment maintenance and repair in continuous production were considered to achieve this purpose: preventive maintenance, repair based on the actual condition, Run-to-Failure Maintenance. Continuous production is characterized by process accuracy, production system interconnection, the presence of powerful substances and energy flows, automation, downtime high cost, the technological line and its components specialization, assessing complexity of the changes efficiency in the technical complex components, continuous, periodic and random operations presence, flows synchronization, territorial localization. The described continuous production features are technological and organizational constraints, therefore the maintenance system should be flexible, taking into account the continuous production features and adaptive to emerging situations, using the various considered approaches principles.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):82-89
views
Advanced technologies for additive manufacturing of metal product
Oskolkov A.A., Matveev E.V., Bezukladnikov I.I., Trushnikov D.N., Krotova E.L.

Abstract

In this article, the most effective technologies for the additive manufacturing of metal products, using the methods of layer-by-layer deposition of the material are considered. The principles of operation of such technologies as GMAW, GTAW, PAW, CMT, DMD, LBDMD, EBAM, FDM are described. A summary table of key characteristics of these processes and their comparative analysis are presented. The advantages and disadvantages of these methods, main applications and development tendencies are revealed. The most promising direction of development of technologies for creating metal products by the method of layer-by-layer deposition of the material is determined. It is concluded that FDM technology has not fully revealed its potential due to a wide range of technical problems. Current research is considered aimed at overcoming existing technological barriers that impede the development of FDM 3D printing technology. The range of issues to be solved for the successful manufacture of metal products using this technology is considered. Hypotheses and ways of solving problems are being put forward. Prospects of this technology are considered, as well as an assessment of its utility in production and for society. The initial stage of development by the scientific team of Perm National Research Polytechnic University of a more mobile and easily accessible technology for printing metal products of complex geometric shapes based on FDM technology of 3D printing is presented. A number of technical solutions have been described that allow to avoid or solve existing problems and limitations in this area. For example, heating the hot-end of the extruder to 1000 ° C for several tens of seconds and previously impossible rapid and accurate temperature control, which allows to fully control the extrusion process of the material.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):90-105
views
Investigation of secondary emission signals from the impact zone of the laser beam during laser beam welding in vacuum
Letyagin I.Y., Trushnikov D.N., Belenkii V.Y., Pang S., Lyamin Y.V.

Abstract

Development and improvement of laser equipment used for welding, makes it possible to increase the proportion of laser welding processes. This is necessary to obtain high-quality connections. There is a problem of absorbing of part of the laser beam power by a plasma cloud during laser welding with deep penetration. The problem can be solved by using laser welding in a vacuum. Laser welding in vacuum makes it possible to obtain much more penetration depth at the same power of the laser beam as compared to laser welding in a protective gas environment. Laser welding in vacuum also provides effective protection of the welding zone from the external environment, which is especially important when welding active metals. It is necessary to study the processes in a plasma cloud formed above the zone of action of a laser beam on a metal. The study of secondary emission processes in the plasma in the zone of action of a laser beam on a metal in a vacuum made it possible to carry out a numerical simulation of processes in laser welding, depending on the focusing of the laser beam and other technological parameters of laser welding in vacuum. In the course of the study, a secondary emission current was recorded in order to control the geometric parameters of penetration during laser welding. Varying the pressure in the vacuum chamber confirmed the collisional mechanism of damping of secondary-emission current oscillations. Register secondary emission of the ion current signal is of particular interest because the parameters recorded signal is not related to the excitation of plasma oscillations. Conse- quently, the magnitude of the ion current directly reflects the fluctuations in the density of metal vapors flowing out of the channel. This technique can be used in the construction of methods for the operational control of the welding process.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(3):106-114
views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies