Mechanical safety of underground linear and point water-carrying structures under external influences
- Authors: Perminov N.A1
- Affiliations:
- Saint Petersburg State University of Railways of Emperor Alexander I
- Issue: Vol 15, No 4 (2024)
- Pages: 46-58
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/CG/article/view/4500
- DOI: https://doi.org/10.15593/2224-9826/2024.4.05
- Cite item
Abstract
The purpose of the study is to solve the problem of ensuring the mechanical safety of underground wastewater disposal facilities and increasing the reliability of their operation, taking into account the current technical condition and the range of natural and man-made external and internal influences. Based on the analysis of the joint work of linear and point underground structures in a ground mass with a combination of influences of various nature, to identify factors influencing the risk of reducing their mechanical safety. When systematically examining the structure as a whole, its interfaces or part of the structures, to identify defects and conditions of their manifestation, which may lead to destruction or loss of stability of the structure as a whole, its interfaces or part of the structures. According to the level of stress-strain state of local interface zones and the boundaries of the distribution of exceedances of maximum permissible values over the structure and the enclosing soil massif, design scenarios and situations are identified that correspond to a violation of the structural safety of the structure as a whole in one case, and in the other – the structural safety of a part of the structure (node) of the structure. The causes and mechanism of defects in coupled structures of tunnels and mines operating under conditions of non-stationary impacts during wastewater transportation have been identified. A methodology and algorithm for conducting joint geotechnical and design calculations are proposed that allow modeling the processes of interaction between the tunnel shell and the ground environment and predicting the parameters of their joint work, ensuring the operation of the structure and its parts within the boundaries of mechanical safety. Based on the results of interaction modeling, the limiting levels of the stress-strain state were determined, both for parts of structures and local interface zones responsible, respectively, for structural and structural safety, and for the structure as a whole - its mechanical safety. Geotechnical protection methods and a monitoring system for ensuring the mechanical safety of spatially and geometrically heterogeneous underground wastewater disposal facilities are proposed.
Full Text
5About the authors
N. A Perminov
Saint Petersburg State University of Railways of Emperor Alexander I
References
- Perminov, N.A. Modeling and monitoring of structural safety of long-operating under-ground structures of the sewage system (the experience of St. Petersburg) / N.A. Perminov, R.A. Mangushev // International Journal for Computational Civil and Structural Engineering. – 2022. – Vol. 18, № 3. – P. 95–113. doi: 10.22337/2587-9618-2022-18-3-95-113
- Отведение и очистка сточных вод Санкт-Петербурга / под ред. Ф.В. Кармазинова. – 2-е изд. – СПб., 2002. – 683 c.
- Справочник геотехника. Основания, фундаменты и подземные сооружения / под общ. ред. В.А. Ильичева и Р.А. Мангушева. – 3-е изд., доп. и перераб. – М.: АСВ, 2023. – 1084 с.
- Федеральный закон. «Технический регламент о безопасности зданий и сооружений» 12.10.2009. №384-ФЗ (the updated version 2016).
- Бондаренко, В.М. Развитие теории оценки и обеспечения конструктивной безопасности строительных объектов / В.М. Бондаренко, В.И. Травуш // Фундаментальные исследования РААСН по научному обеспечению развития архитектуры, градостроительства и строительной отрасли в 2011 г. Научные труды РААСН. – РААСН; Моск. гос. строит. ун-т. – М., 2012. – С. 25–30.
- Золотозубов, Д.Г. Обеспечение конструкционной безопасности грунтовых оснований при возникновении провалов на карстовых территориях / Д.Г. Золотозубов, А.Б. Пономарев // Вестник Волгоградского государственного архитектурно-строительного уни-верситета. Серия: Строительство и архитектура. – 2009. – № 15 (34). – С. 15–18.
- Перминов, Н.А. Геотехнический аспект обеспечения безопасности объектов длительного пользования инженерной инфраструктуры крупных городов в сложных природных условиях / Н.А. Перминов // Геотехника дорог и железных дорог. – 2014. – С. 1195–1201.
- Ержанов, Ж.С. Динамика тоннелей и подземных трубопроводов / Ж.С. Ержанов, Ш.М. Айталиев, Л.А. Алексеева // Алма-Ата: Наука Казахской ССР, 1989. – С. 240.
- Пономарев, А.Б. Проблемы исследования вибрации фундаментов зданий, вызываемой движением автотранспорта / А.Б. Пономарев, О.А. Шутова // Природные и техногенные риски. Безопасность сооружений. – 2020. – № 3(46). – С. 26–28.
- Алексеев, М.И. О специфике показателей надежности водоотводящих сетей / М.И. Алексеев, Ю.А. Ермолин // Водоснабжение и санитарная техника. – 2015. – № 1. – С. 41–50.
- Вознесенский, Е.А. Динамическая неустойчивость грунтов / Е.А. Вознесенский. – М.: Эдиториал, 1999. – С. 264.
- Панкратова, К.В. Вибрационное поле Санкт-Петербурга / К.В. Панкратова // Гор-ный информационно-аналитический бюллетень. – 2016. – № 4. – С. 211–216.
- Variation in the Microstructure of Clay Soil during Deformation under Triaxial Compression with Consideration of the Occurrence of Deformation Instability / E.A. Voznesensky, A.N. Usov, M.S. Chernov, V.N. Sokolov // Moscow University Geology Bulletin. – 2018. – No. 1. – P. 83–86. doi: 10.3103/S014587521801012X
- Перминов, Н.А. Моделирование и мониторинг конструкционной безопасности уникальных подземных сооружений системы водоотведения крупных городов в сложных грунтовых условиях / Н.А. Перминов // Construction and Geotechics. – 2021. – Т. 12, № 1. – С. 30–45. doi: 10.15593/2224-9826/2021.1.03
- Алексеев, М.И. Приближенная аналитическая оценка показателей надежности стареющих объектов ВКХ / М.И. Алексеев, Л.А. Баранов, Ю.А. Ермолин // Вода и эколо-гия: проблемы и решения. – 2019. – № 3 (79). – С. 3–8.
- Reliability, availability and maintainability analysis of the conveyor system in mechanized tunneling / S. Ahmadi, S. Moosazadeh, M. Hajihassani, H. Moomivand, M.M. Rajaei // Meas J Int Meas Confed. – 2019. doi: 10.1016/j.measurement.2019.06.009
- Способ ремонта тоннельных коллекторов и подземных трубопроводов: Патент № 2630629, РФ. МПК F16L 55/165, F16L 55/163, B29C 53/78 / Перминов Н.А., Перминов Ан.Н., Перминов Ал.Н., Сергеенко Н.Ю. // Изобретения. Полезные модели. – 2017. – № 26.
- Wang, S. Risk assessment of collapse in mountain tunnels and software development / S. Wang, L. Li, S. Cheng // Arab J Geosci. – 2020. – No. 13. doi: 10.1007/s12517-020-05520-6
- Risk assessment of loess tunnel collapse during construction based on an attribute recognition model / Z. Xu, N. Cai, X. Li, M. Xian, T. Dong // Bull Eng Geol Environ. – 2021. doi: 10.1007/s10064-021-02300-8
- Haghshenas, S.S. Utilization of soft computing for risk assessment of a tunneling project using geological units / S.S. Haghshenas, M. Barmal, N. Farzan // Civ Eng J. – 2016. – P. 358–364.
- Real-time risk assessment of tunneling-induced building damage considering polymorphic uncertainty / B.T. Cao, M. Obel, S. Freitag, L. Heußner, G. Meschke, P. Mark // ASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng. – 2022. doi: 10.1061/ajrua6.0001192
- Perminov, N. Simulation of defectless lifecycle of unique underground structures of the sewage system at the stage of their construction in difficult soil conditions / N. Perminov // International Journal for Computational Civil and Structural Engineering. – 2019. – Vol. 15, no. 1. – P. 119–130. doi: 10.22337/2587-9618-2019-15-1-119-130
- Salemi, A. Integration of finite difference method and genetic algorithm to seismic analysis of circular shallow tunnels (Case Study: Tabriz Urban Railway Tunnels) / A. Salemi, R. Mikaeil, S.S. Haghshenas // KSCE J Civ Eng. – 2018. – P. 1978–90. doi: 10.1007/s12205-017-2039-y
Statistics
Views
Abstract - 7
PDF (Russian) - 14
Refbacks
- There are currently no refbacks.