Overview of analytical and empirical methods for calculating the settlements of the soil surface during of tunneling

Abstract


Tunneling by the shield method often causes deformations in the soil mass and on the surface. With the active development of tunnel boring in the twentieth century, deformations of soil surface and structures have become very relevant topics for the safety of closed work. From the foundations of rock mechanics firstly appeared analytical methods with the consideration of the theories of elasticity for space and half-space. And after that, with reference to the accumulated experience and analysis of field monitoring results a complex of empirical methods appeared. Both groups of methods are still of applied im-portance and, at times, continue to be improved. The aim of the work is a review and comparative analysis of analytical and empirical methods of various authors for determining settlement and distance to the inflection point of the settlement curve (ix), as well as their systematization with reference to their appearance and the features of the development of this field of geotechnics.With the help of a comprehensive comparative and content analysis of various approaches to determining the settlement of soil surface and the distance to the inflection point of the settlement curve (ix) in tunnel boring, the paper presents the main classification of these analytical and empirical methods in their chronological appearance.The analysis of some examples of comparison of analytical and empirical methods for calculating the values of soil surface settlement in the sources of different years provides coverage of the absolute majority of studies from the moment of their appearance for taking into account tunnel-boring operations. Comparative results of available research are presented and some approaches of the most cited studies are analyzed.An extensive review of analytical and empirical methods of the soil surface and structures settlement during tunnel-boring shows that these methods can no longer always meet all the conditions, approaches and standards of modern design methods for geotechnical and tunnel construction tasks. However, understanding the vector of development of these groups of methods provides insight into the development of engineering thought and the accumulation of statistical material of field measurements of half a century tunneling experience.

Full Text

7

About the authors

I. A Tikhoniuk

Moscow State University of Civil Engineering

References

  1. Peck, R.B. Deep excavation and tunnelling in soft ground. State of the art report / R.B. Peck // Proc. 7th Int. Conf .SMFE. – Mexico City, 1969. – P. 147–150.
  2. Jeffery, G.B. Plane stress and plane strain in bipolar coordinates / G.B. Jeffery // Trans. R. Soc. London Ser, A 221, 1920. – P. 265–293.
  3. Mindlin, R.D. Stress distribution around a tunnel / R.D. Mindlin // Trans. ASCE 105. – 1940. – P. 1117–1153.
  4. Лиманов, Ю.А. Осадки земной поверхности при сооружении тоннелей в кембрийских глинах / Ю.А. Лиманов. – Л., 1957. – 239 с.
  5. Гениев, Г.А. Практический метод определения перемещений земной поверхности и напряженного состояния грунтов, вызванных подземными выработками / Г.А. Гениев // Строительная механика и расчет сооружений. – 1977. – № 3. – С. 10–14.
  6. Sagaseta, C. Analysis of undrained soil deformation due to ground loss / C. Sagaseta // Geotechnique. – 1987. – Vol. 37. – P. 301–320.
  7. Verruijt, A. Surface settlements due to deformation of a tunnel in an elastic half plane / A. Verruijt, J.R. Booker // Geotechnique. – 1996. – Vol. 46. – P. 753–756.
  8. Verruijt, A. Surface settlements due to deformation of a tunnel in an elastic half plane / A. Verruijt, J.R. Booker // Developments in Theoretical Geomechanics. Eds. J.P. Smith, D.W. Carter. – Taylor & Francis, 2000.
  9. Verruijt, A. A complex variable solution for a deforming circular tunnel in an elastic half-plane / A.Verruijt // Int. J. Numer. Anal. Meth. Geomech. –1997. – Vol. 21 (2). – P. 77–89.
  10. Loganathan, N. Analytical predictions of tunnelling induced ground movements / N. Loganathan, H.G. Poulos // Geotechnical Engineering Journal, American Society of Civil En-gineers. – 1998. – Vol. 124, no. 9.
  11. Gonzalez, C. Patterns of soil deformations around tunnels: application to the extension of Madrid metro / C. Gonzalez, C. Sagaseta // Comput. Geotech. – 2001. – Vol. 28. – P. 445–468.
  12. Яровой, Ю.И. Прогноз деформаций земной поверхности и защита городской застройки при строительстве метрополитена на Урале / Ю.И. Яровой. – Екатеринбург: Ур-ГАПС, 1999. – 258 с.
  13. Wang, J.G. Twin tunnels-induced ground settlement in soft soil / J.G. Wang, S.L. Kong, C.F. Leung / Proceeding of the Sino-Japanese Symposium on Geotechnical Engineering, Beijing, China, 2003. – P. 241–244.
  14. Хейн, А.М. Оценка техногенных воздействий на окружающую среду при проходке тоннелей, сооружаемых щитовым способом: дис. … канд. техн. наук / А.М. Хейн. – М., 2010. – 110 с.
  15. Елгаев, В.С. Обеспечение безопасности зданий при скоростной проходке тоннелей щитовым способом: автореф. дис. … канд. техн. наук / В.С. Елгаев. – М., 2012.
  16. Авершин, С.Г. Сдвижение горных пород при подземных разработках / С.Г. Авер-шин. – М.: Углетехиздат, 1947. – 245 с.
  17. Melan, E. Der Spannungszustand der durch eine Einzelkraft im Innern beanspruchten Halbscheibe / E. Melan // ZAMM. – 1932. – No. 12. – P. 343–346.
  18. Jâky, J. The coefficient of earth pressure at rest / J. Jâky // Journal of the Union of Hun-garian Engineers and Architects. – 1944. – P. 355–358.
  19. Park, K.-H. Analytical solution for tunnelling-induced ground movement in clays / K.-H. Park // Tunnelling and Underground Space Technology. – 2005. – Vol. 20. – P. 249–261.
  20. Knothe, S. Observations of surface movements under influence of mining and their theo-retical interpretation / S. Knothe // Proceedings European Congress on Ground Movement. – University of Leeds, Leeds, U.K. – 1957. – P. 210–218.
  21. Cording, E.J. Displacements around soft ground tunnels / E.J. Cording, W.H. Hansmire // General Report, 5th Pan American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, 1975. – P. 571–632.
  22. Atkinson, J.H. Subsidence above shallow tunnels in soft ground / J.H. Atkinson, D.M. Potts // Journal of Geotechnical Engineering, American Society of Civil Engineers. – 1977. – GT4. – P. 307–325.
  23. Glossop N.H. Soil deformation caused by soft ground tunnelling: Ph.D. Thesis / N.H. Glossop. – University of Durham, 1978. – 313 p.
  24. Mair, R.J. Ground movements around shallow tunnels in soft clay / R.J. Mair, M.J. Gunn, M.P. O’Reilly // 10th International Conference on Soil Mechanics and Foundation Engineering, Stokholm, 1981. – P. 323–328.
  25. Clough, G.W. Design and performance of excavations and tunnels in soft clay / G.W. Clough, B. Schmidt // Soft Clay engineering. – Eds E.W. Brand, R. Brenner. – 1981. – P. 569–634.
  26. O’Reilly, M.P. Settlements above tunnels in the United Kingdom – Their magnitude and prediction / M.P. O’Reilly, B.M. New // Tunnelling. – 1982. – Vol. 82. – P. 173–181.
  27. Attewell, P.B. Predicting the Dynamics of ground settlement and its Derivatives caused by tunnelling in soil / P.B. Attewell, J.P. Woodman // Ground Engineering. – 1982. – No. 15(8). – P. 13–22.
  28. Herzog, M. Surface subsidence above shallow tunnels / M. Herzog // Bautechnik. – 1985. – Vol. 62(11). – P. 375–377.
  29. Leach, G. Pipeline response to tunneling / G. Leach. – Unpublished paper presented to the North of England Gas Association, January 1985.
  30. Rankin W.J. Ground movements resulting from urban tunnelling: predictions and effects / W.J. Rankin // Engineering Geology of Underground Movement, Geological Society, Engineer-ing Geology Special Publication. – 1988. – No. 5. – P. 79–92.
  31. Uriel, A.O. Selection of design parameters for underground construction / A.O. Uriel, C. Sagaseta // Proceedings of the 12th International Congress on Soils Mechanics, Río de Janeiro, 13–18 August 1989. General report, Discussion session. – A.A. Balkema, Rotterdam, 1989. – Vol. 9. – P. 2521–2551.
  32. Arioglu, E. Surface movements due to tunnelling activities in urban areas and minimiza-tion of building damages / E. Arioglu. – Istanbul Technical University, Mining Engineering De-partment, 1992. – 43 p.
  33. Mair, R.J. Subsurface settlement profiles above tunnels in clays / R.J. Mair, R.N. Taylor, A. Bracegirdle // Geotechnique. – 1993. – Vol. 43. – P. 315–320.
  34. Lee, C.J. Soil movements around a tunnel in soft soils / C.J. Lee, B.R. Wu, S.Y. Chiou // Proc. Nat. Sci. Council, Part A: Phys. Sci. Eng. – 1999. – No. 23 (2). – P. 235–247.
  35. Möller, S.C. Tunnel induced settlements and structural forces in linings. Doctoral Dis-sertation / S.C. Möller. – 2006. – 174 p.
  36. Jones, B. Low-volume-loss tunnelling for London ring main extension / B. Jones // Pro-ceedings of the ICE – Geotechnical Engineering, 2010. – Vol. 163(3). – P. 167–185.
  37. Тупиков, М.М. Особенности деформирования грунтового массива и сооружений при строительстве мелкозаглубленных коммуникационных тоннелей в городских услови-ях: дис. … канд. техн. наук / М.М. Тупиков. – М., 2010. – 184 с.
  38. Chakeri, H. A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground / H. Chakeri, B. Ünver // Environmental Earth Sciences. – 2014. – Vol. 71(7). – P. 3195–3210.
  39. Протосеня, А.Г. Разработка метода прогноза давления пригруза забоя и осадок земной поверхности при строительстве тоннелей механизированными проходческими комплексами / А.Г. Протосеня, Н.А. Беляков, До Нгок Тхай // Записки горного института. – 2015. – Т. 211. – С. 53–63.
  40. Schmidt, B. A method of estimating surface settlement above tunnels constructed in soft ground / B. Schmidt // Can Geotech. – 1969. – Vol. 20. – P. 11–22.
  41. Attewell, P.B. Ground movements caused by tunnelling in soil / P.B. Attewell // Proc. of the Large Ground Movements and Structures Conference. – Cardiff, Edited by Geddes, Pentech Press, London, 1977. – P. 812–948.
  42. Merkezi, Y. Prediction of ground movements during the construction of Istanbul Metro / Y. Merkezi // Internal Report Yapi Merkezi. – Istanbul, 1992.
  43. Han, X. Practical methods of tunnel construction and building deformation caused by ground movement prediction: Ph.D. thesis / X. Han. – Xian University of Technology, 2006.
  44. Wei, G. Study on calculation for width parameter of surface settlement trough induced by shield tunnel / G. Wei // Chin. J. Ind. Constr. – 2009. – Vol. 39 (12). – P. 74–79.
  45. Improved analytical solution for ground movements induced by circular tunnel excavation based on ground loss correction / B. Zhu, P. Zhang, M. Lei, L. Wang, L. Gong, C. Gong, F. Chen // Tunnelling and Underground Space Technology. – 2023. – Vol. 131. – P. 104811.
  46. Melis, M. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid metro extension / M. Melis, L. Medina, J.M .Rodriguez // Canadian Geotechnical Journal. – 2002. – Vol. 39 (6). – P. 1273–1287.
  47. Melis, M. Predicted versus measured soil movements induced by shield tunnelling in the Madrid Metro extension / M. Melis, J.M. Rodriguez // Canadian Geotechnical Journal. – 2005. Vol. 42. – P. 1160–1172.
  48. Методы оценки осадок при проходке тоннелей с использованием тоннелепроходческих механизированных комплексов / И.А. Гуськов, Е.А. Пестрякова, С.С. Харитонов, Е.Ю. Титов // Интернет-журнал «Транспортные сооружения». – 2019. – № 3. doi: 10.15862/18SATS319
  49. Burland, J.B. Settlement of buildings and associated damage / J.B. Burland, C.P. Wroth // Conf. Settlement of Structures, Cambridge. – London: Pentech Press, 1974. – P. 611–654.
  50. Burland, J.B. Behaviour of foundations and structures / J.B. Burland, B. Broms, V.F.B. De Mello // Proc. 9th Int. Conf. SMFE, Tokyo, 1977. – Vol. 2. - pp. 495-546.
  51. Potts, D.M. The influence of an existing surface structure on the ground movements due to tunneling / D.M. Potts, T.I. Addenbrooke // International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. – London, Rotterdam, City University, 1996. – P. 573–578.
  52. Potts, D.M. A structures influence on tunnelling-induced ground movements / D.M. Potts, T.I. Addenbrooke // Proc. Instn Civ Engrs, Geotecnical Engineering. – 1997. – Vol 125. – P. 109–125.
  53. Mair, R.J. Bored tunnelling in the urban environment / R.J. Mair, R.N. Taylor // Proceedings of 14th International Conference on Soil Mechanics and Foundation Engineering. – Hamburg, Balkema, 1997. – Vol. 4. – P. 2353–2385.
  54. Franzius, J.N. The influence of building weight on the relative stiffness method of predicting tunnelling-induced building deformation / J.N. Franzius, T.I. Addenbrooke // Proc. the 3rD Int. Symp. (IS-Toulouse 2002) «Geotechnical Aspects of Underground Construction in Soft Ground». 1st Session: Design methods of tunnels: Stability, settlements, and tunnel linings. Tou-louse, France, 23–25 October 2002. – P. 53–57.
  55. Franzius, J.N. The response of surface structures to tunnel construction / J.N. Franzius, D.M. Potts, J.B. Burland // Proceedings of the ICE – Geotechnical Engineering. – 2006. – Vol. 159(1). – P. 3–17.
  56. Farrell, R. Tunnelling in sands and the response of buildings: Ph.D. thesis / R. Farrell. – Cambridge University, 2010.
  57. Mair, R.J. Tunnelling and deep excavations: ground movements and their effects / R.J. Mair // Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering – Geotechnics of Hard Soils - Weak Rocks. – 2013. – Part 4. – P. 39–70.
  58. Goh, K.H. Building damage assessment for deep excavations in Singapore and the influence of building stiffness / K.H. Goh, R.J. Mair // Geotechnical Engineering Journal of the SEAGS & AGSSEA. – 2011. – Vol. 42(3). – P. 1–12.
  59. Goh, K.H. Response of framed buildings to excavation-induced movements / K.H. Goh, R.J. Mair // Soils and Foundations. – 2014. – Vol. 54(3). – P. 250–268.
  60. Mair, R.J. The influence of tunnelling and deep excavation on piled foundations / R.J. Mair, M.G. Williamson // Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Seoul, South Korea. – 2014. – P. 21–30.
  61. Losacco, N. Uncoupled evaluation of the structural damage induced by tunneling / N. Losacco, A. Burghignoli, L. Callisto // Géotechnique. – 2014. – Vol. 64(8). – P. 646–656.
  62. Giardina, G. Interaction between surface structures and tunnelling in sand: Centrifuge and computational modeling / G. Giardina, M.J. DeJong, R.J. Mair // Tunnelling and Underground Space Technology. – 2015. – Vol. 50. – P. 465–478.
  63. D numerical modelling of soil–structure interaction during EPB tunneling / V. Fargnoli, C.G. Gragnano, A. Amorosi, D. Boldini // Géotechnique. – 2015. – Vol. 65(1). – P. 23–37.
  64. Franza, A. Tunnelling and its effects on piles and piled structures: Ph. D. thesis / A. Franza. – University of Nottingham, 2017.

Statistics

Views

Abstract - 21

PDF (English) - 16

Refbacks

  • There are currently no refbacks.

Copyright (c) 2024 Tikhoniuk I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies