Overview numerical methods for calculating the settlements of the soil surface during of tunneling

Abstract


It is well known that tunneling using the shield method often causes deformations in the soil mass and on the surface. As a result, the potential damage from tunneling operations to overlying structures in the zone of influence depends on a number of factors, namely: the soil mass and its characteristics, technical and technological features of the tunnel and tunneling machine. And it is numerical methods that make it possible to most reliably simulate the conditions of tunneling close to real ones. The purpose of the work is a review and comparative analysis of the methods of various authors for determining settlements and calculating the excess excavation ratio (volume loss) VL, analysis of the data provided, including field data, as well as determining the possibility of their improvement.With the help of a comprehensive comparative and content analysis of various approaches to determining the settlements of the earth's surface and the excess excavation ratio (volume loss) VL of tunneling operations, the paper presents the main types of numerical methods for calculating the settlements of the earth's surface and the excess excavation ratio (volume loss) VL in chronological order of their occurrence.The analysis of a variety of numerical methods, examples of values of settlements of the earth's surface and the excess excavation ratio (volume loss) VL from sources of various years, provides a broader overview of the results of tunneling operations. The results of the most significant studies are presented. Some approaches to the formation of theories of the most interesting and cited studies are analyzed and explained.Since the settlements of the earth's surface and, accordingly, the overlying structures determines the presence or absence of measures to reduce the impact on them or protection, their correct definition allows you to reduce the cost of construction during tunneling in the zone of influence. Accordingly, there is a further need to develop this geotechnical direction using numerical methods in search of optimal and high-quality solutions for determining settlements from tunneling operations and calculating the excess excavation ratio (volume loss) VL, as well as for possible improvement of regulatory documentation in this area.

Full Text

4

About the authors

A. Z Ter-Martirosyan

Moscow State (National Research) University of Civil Engineering

I. A Tikhoniuk

Moscow State (National Research) University of Civil Engineering

References

  1. Тихонюк, И.А. Обзор аналитических и эмпирических методов расчета осадок поверхности грунта при щитовой проходке / И.А. Тихонюк // Construction and Geotechnics. – 2024. – Т. 15, № 4. – С. 78–101. doi: 10.15593/2224-9826/2024.4.07
  2. Rowe, R.K. A theoretical examination of the settlements induced by tunnelling: Four Case Histories / R.K. Rowe, G.J. Kack // Canadian Geotechnical Journal. – 1983. – Vol. 20. – P. 299–314.
  3. Lee, K.M. Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils: Part I–Method of analysis / K.M. Lee, R.K. Rowe // Computers and Geotechnics. – 1990. – No. 10(2). – P. 87–109.
  4. Lee, K.M. Subsidence owing to tunnelling. I. Estimating the gap parameter / K.M. Lee, R.K. Rowe, K.Y. Lo // Canadian Geotechnical Journal. – 1992. – Vol. 29. – P. 929–940.
  5. Loganathan, N. Analytical Predictions of Tunnelling Induced Ground Movements / N. Loganathan, H.G. Poulos // Geotechnical Engineering Journal, American Society of Civil Engineers. – 1998. – Vol. 124, no. 9.
  6. Panet, M. Analysis of convergence behind the face of a tunnel. / M. Panet, A. Guenot // Proceedings of International Symposium Tunnelling’82. June 7 to 11 1982. – The Institution of Mining and Metallurgy, Brighton, London, 1982. – P. 197–204.
  7. Swoboda, G. Finite element analysis of the New Austrian Tunneling Method (NATM) / G. Swoboda // Proceedings of the 3rD International Conference on Numerical Methods in Geomechanics, Aachen. – 1979. – April 2 to 6. – Vol. 2. – P. 581–586.
  8. Swoboda, G. Finite element modelling of tunnel excavation / G. Swoboda, M. Marence, I. Mader // International Journal of Engineering Modelling. 1994. – No. 6. – P. 51–63.
  9. Möller, S.C. Tunnel induced settlements and structural forces in linings. Doctoral Dissertation / S.C. Möller. – 2006. – 174 p.
  10. Jâky, J. The coefficient of earth pressure at rest / J. Jâky // Journal of the Union of Hungarian Engineers and Architects. – 1944. – P. 355–358.
  11. Строкова, Л.А. Численное моделирование оседания поверхности при проходке метрополитена / Л.А. Строкова // Основания, фундаменты и механика грунтов. – 2009. – № 3. – С. 29–31.
  12. Bian, X. Evaluating the effect of soil structure on the ground response during shield tunnelling in Shanghai soft clay / X. Bian, Z.S. Hong, J.W. Ding // Tunnelling and Underground Space Technology. – 2016. – Vol. 58. – P. 120–132.
  13. Karakus, M. Appraising the methods accounting for 3D tunnelling effects in 2D plane strain FE analysis / M. Karakus // Tunnelling and Underground Space Technology. – 2007. – Vol. 22(1). – P. 47–56.
  14. Potts, D.M. Finite element analysis in geotechnical engineering: Theory. – Vol. 1 / D.M. Potts, L. Zdravković. – London: Thomas Telford, 1999.
  15. Gonzalez, C. Patterns of soil deformations around tunnels: application to the extension of Madrid metro / C. Gonzalez, C. Sagaseta // Comput. Geotech. – 2001. – Vol. 28. – P. 445–468.
  16. Numerical and analytical modeling of ground Deformations Due to shallow tunneling in soft soils. / A.J. Whittle, Y.M. Hsieh, F.P into, Y. Chatzigiannelis // First MIT Conference on Computational Fluid and Solid Mechanics, Massachusetts Institute of Technology Cambridge, June 12 to 15, 2001. – Cambridge, MA, USA. – P. 546–549.
  17. Whittle, A.J. Analyzing the effects of gaining and losing ground / A.J. Whittle, C. Sagaseta // Soil behavior soft ground construction. – Eds. J.T. Germain [et al.]. – ASCE, Reston, VA. – 2003. – Vol. 119. – P. 255–291.
  18. Ieronymaki, E.S. Interpretation of free-field ground movements caused by mechanized tunnel construction / E.S. Ieronymaki, A.J. Whittle, D.S. SureDa // Journal of Geotechnical and Geoenvironmental Engineering. – 2017. – Vol. 143(4). – P. 04016114.
  19. Leca, E. Settlements induced by tunneling in soft ground / E. Leca, B. New // Tunnelling Underground Space Technol. – 2007. – Vol. 22(2). – P. 119–149.
  20. Macklin, S.R. The prediction of volume loss due to tunnelling in overconsolidated clay based on heading geometry and stability number / S.R. Macklin // Ground engineering. – 1999. – Vol. 32(4). – P. 30–33.
  21. Simpson, B. The influence of anisotropy on calculations of ground settlements above tunnels / B. Simpson, J.H. Atkinson, V. Jovicis // Proceedings of International Symposium on Geotechnical Aspects of the Underground Construction in Soft Ground. – 1996. – P. 511–514.
  22. Potts, D.M. A structures influence on tunnelling-induced ground movements / D.M. Potts, T.I. Addenbrooke // Proc. Instn Civ Engrs, Geotecnical Engineering. – 1997. – Vol. 125. – Р. 109–125.
  23. Gong, Q.M. Shield tunneling beneath existing railway line in soft ground / Q.M. Gong, S.H. Zhou // Geotechnical Aspects of Underground Construction in Soft Ground: Proceedings of the 6th International Symposium (IS-Shanghai 2008). – London: CRC Press, 2008. – Р. 381–384.
  24. Zhang, H.J. Numerical analysis of shield tunnel driving underneath an existing railway and related reinforcement effects on subsidence control / H.J. Zhang, Q. Gong, H.G. Di // ICPTT 2014: Creating Infrastructure for a Sustainable World, the Committee on Sustainability of the American Society of Civil Engineers, California, USA, 6 to 8 November 2014. – 2014. – Р. 828–835.
  25. Zhao, Y. Tunneling-induced settlement evaluation for new tunnel underneath existing tunnel / Y. Zhao, T. Qi // Proceedings of Geo-Shanghai 2014, Shanghai, China, ASCE, Reston, VA, May 26 to 28 2014. – 2014. – Р. 143–154.
  26. Chakeri, H. A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground / H. Chakeri, B. Ünver // Environmental Earth Sciences. – 2014. – Vol. 71(7). – Р. 3195–3210.
  27. Тупиков, М.М. Особенности деформирования грунтового массива и сооружений при строительстве мелкозаглубленных коммуникационных тоннелей в городских условиях: дис. … канд. техн. наук / М.М. Тупиков. – М., 2010. – 184 c.
  28. Исаев, O.H. К вопросу влияния расчётных параметров на моделирование перемещений грунта при проходке тоннеля / O.H. Исаев, И.А. Боков, Р.Ф. Шарафутдинов // Труды международной конференции по геотехнике «Геотехнические проблемы мегаполисов». Москва, 7-10 июня 2010 г. – 2010. – Т. 4. – С. 1547–1554.
  29. Исаев, О.Н. Перебор грунта при строительстве коммуникационных тоннелей щитовым способом / O.H. Исаев, Р.Ф. Шарафутдинов // Механизация строительства. – 2012. – № 6(816). – С. 2–7.
  30. Петрухин, В.П. Геотехнический прогноз при строительстве коммуникационных тоннелей методом щитовой проходки / В.П. Петрухин, О.Н. Исаев, Р.Ф. Шарафутдинов // Вестник НИЦ «Строительство». – 2014. – № 10. – с. 114–131.
  31. Numerical analysis of influence of large-diameter EPB shield tunneling on ground deformation in Beijing area / T. Gong, X. Yang, C. Qi, D. Ding // Proceedings of 2nD International Conference on Electronic & Mechanical Engineering and Information Technology, Atlantis Press, Paris, France, 7 September 2012. – 2012. – P. 864–869.
  32. Loganathan, N. An innovative method for assessing tunnelling-induced risks to adjacent structures / N. Loganathan. – New York: Parsons Brinckerhoff Inc., 2011.
  33. Vu, M.N. Volume loss in shallow tunneling / M.N. Vu, W. Broere, J. Bosch // Tunnelling and Underground Space Technology. – 2016. – Vol. 59. – P. 77–90.
  34. Cheng, H.Z. Analysis of ground surface settlement induced by a large EPB shield tunnelling: a case study in Beijing, China / H.Z. Cheng, J. Chen, G.L. Chen // Environmental Earth Sciences. – 2019. – Vol. 78, iss. 20.
  35. Peck, R.B. Deep excavation and tunnelling in soft ground. State of the art report / R.B. Peck // Proc 7th Int Conf SMFE. – Mexico City, 1969. – P. 147–150.
  36. Hanya, T. Ground movements due to construction of shields-driven tunnel / T. Hanya // 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo. – 1977. – P. 759–790.
  37. Broms, B.B. Stability of clay at vertical openings / B.B. Broms, H. Bennermark // Journal of Soil Mechanics and Foundations Division. – 1967. – Vol. 193(SM1). – P. 71–94.
  38. Bezuijen, A. Bentonite and grout flow around a TBM / A. Bezuijen // Underground Space – The 4th Dimension of Metropolises, Three Volume Set + CD-ROM: Proceedings of the World Tunnel Congress 2007 and 33rd ITA/AITES Annual General Assembly, Prague, May 2007. – CRC Press, 2007. – P. 383.
  39. Lagerblad, B. Shrinkage and Durability of Shotcrete / B. Lagerblad, L. Fjallberg, C. Vogt // Proceeding of Shotcrete Elements of a System. Ed. E.S. Bernard. – London: Taylor & Francis Group, 2010. – P. 173–180.
  40. Ingles, O.G. Soil Stabilisation / O.G. Ingles. – Sydney: Butterworths, 1972.
  41. Loganathan, N. Estimation of ground loss During tunnel excavation» / N. Loganathan, H.G. Poulos, A. Bustos-Ramirez // Paper presented at GeoEng2000, Melbourne, Australia, 2000.
  42. Loganathan, N. Prediction of tunnelling-induced ground movements: assessment and evaluation / N. Loganathan, R.F. Flanagan // Proceedings of the Underground, Singapore, 2001.
  43. EPB TBM tunneling in Singapore old alluvium / N. Loganathan, J. O’Carroll, R.F. Flanagan, B.T. Tan // Proceedings of the Rapid Excavation and Tunneling Conference, Seattle, Washington, United States, June 2005.
  44. Mair, R.J. Ground movements around shallow tunnels in soft clay / R.J. Mair, M.J. Gunn, M.P. O’Reilly // 10th International Conference on Soil Mechanics and Foundation Engineering. – Stokholm, 1981. – P. 323–328.
  45. Mair, R.J. Geotechnical aspects of soft ground tunneling / R.J. Mair // Proceedings of International Symposium on Construction Problems in Soft Soils. – Singapore: Nanyang Technological Institute, 1983.
  46. Attewell, P.B. Soil movements induced by tunnelling and their effects on pipelines and structures / P.B. Attewell, J. Yeates, A.R. Selby. – New York, Methuen, Inc., 1986.
  47. O’Reilly, M.P. Evaluating and predicting ground settlements caused by tunnelling in London Clay / M.P. O’Reilly // Proc. Tunnelling '88. – London: IMM, 1988.
  48. Mair, R.J. Discussion leaders report on session 9: Selection of Design parameters for underground construction / R.J. Mair // Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio De. 1989. – Vol. 5. – P. 2891–2893.
  49. A suitable slurry pressure in slurry-type shield tunneling / A. Mori, M. Tamura, K. Kurihara, H. Shibata // Proc Tunnelling ’91. – London, 1991. – P. 361–369.
  50. Jancsecz, S. Face support for a large mix-shield in heterogeneous ground conditions / S. Jancsecz, W. Steiner // Tunnelling 94. – Springer, 1994. – P. 531–550.
  51. Mair, R.J. Bored tunnelling in the urban environment. State-of-the-art Report and Theme Lecture / R.J. Mair, R.N. Taylor // Proceedings of 14th International Conference on Soil Mechanics and Foundation Engineering. – Hamburg: Balkema, 1997. – Vol.4. – P. 2353–2385.
  52. Dimmock, P.S. Estimating volume loss for open-face tunnels in London clay / P.S. Dimmock, R.J. Mair // Proceedings of the ICE-Geotechnical Engineering. – 2007. – Vol. 160 (1). – P. 13–22.
  53. Vu, M.N. Effects of cover depth on ground movements induced by shallow tunneling / M.N. Vu, W. Broere, J.W. Bosch // Tunnelling and Underground Space Technology. – 2015. – Vol. 50. – P. 499–506.
  54. Nagel, F. Grout and bentonite flow around a TBM: Computational modeling and simulation-based assessment of influence on surface settlements / F. Nagel, G. Meschke // Tunnelling and Underground Space Technology. – 2011. – Vol. 26 (3). – P. 445–452.
  55. Sagaseta, C. Analysis of undrained soil deformation due to ground loss / C. Sagaseta // Geotechnique. – 1987. – Vol. 37. – P. 301–320.
  56. Taylor, R.N. Prediction of clay behavior around tunnels using plasticity solutions / R.N. Taylor // Predictive Soil Mechanics: Proceedings of the Wroth Memorial Symposium Held at St. Catherine’s College, Oxford, 27-29 July 1992. – Thomas Telford, 1992. – P. 449.
  57. Verruijt, A.A. complex variable solution for a deforming circular tunnel in an elastic half-plane / A.A. Verruijt // Int. J. Numer. Anal. Meth. Geomech. – 1997. – Vol. 21 (2). – P. 77–89.
  58. Strack, O.E. Analytic solutions of elastic tunneling problems. Ph.D. thesis / O.E. Strack. – Delft University of Technology, 2002.
  59. Yu, H.-S. Cavity expansion methods in geomechanics / H.-S. Yu. – Springer Science & Business Media, 2013.
  60. Terzaghi, K. Theoretical Soil Mechanics / K. Terzaghi. – 1944.
  61. Bogusz, W. Prediction of tunneling-induced ground movements / W. Bogusz. Doctoral Dissertation, 2021. – 123 p.
  62. Nomoto, T. Overview on ground movements during shield tunneling – A survey on Japanese shield tunneling / T. Nomoto, H. Mori, M. Matsumoto // Underground Construction in Soft Ground. – Balkema, 1995. – P. 345–351.
  63. Kanayasu, S. Stability of excavation face in earth pressure balanced shield / S. Kanayasu, Y. Yamamoto, Y. Kitahara // Underground Construction in Soft Ground. – Balkema, 1995. – P. 265–268.
  64. Moh, Z.C. Ground movements around tunnels in soft ground / Z.C. Moh, D.H. Ju, R.N. Hwang // Proceedings International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. – 1996. – Vol. 730. – Balkema, 1996. – P. 725–730.
  65. Simic, D. Ground behaviour and potential damage to buildings caused by the construction of a large diameter tunnel for the Lisbon Metro / D. Simic, G. Gittoes // Proc. Int. Symp. on Geotechnical aspects of underground construction in soft ground. Eds. R.J. Mair, R.N. Taylor. – Rotterdam: Balkema, 1996. – P. 745–752.
  66. Ata, A.A. Ground settlements induced by slurry shield tunnelling in stratified soils / A.A. Ata // Proceedings of the International Conference on North American tunnelling’96 and the 22nd General Assembly of the International tunneling association. – Vol. 1. – Washington, 1996. – P. 43–50.
  67. Ou, C.-Y. Surface settlement during shield tunnelling at CH218 in Taipei / C.-Y. Ou, R.N. Hwang, Wei-Jung Lai // Canadian Geotechnical Journal. – 1998. – Vol. 35(1). – P. 159–168.
  68. Определение фактического коэффициента перебора грунта путем анализа данных мониторинга / А.З. Тер-Мартиросян, Н.Ф. Бабушкин, И.О. Исаев, В.В. Шишкина // Геотехника. – 2020. – Т. VII, № 1. – С. 34–42.
  69. Тер-Мартиросян, А.З. Определение фактического коэффициента перебора (участок «Стахановская улица» – «Нижегородская улица») / А.З. Тер-Мартиросян, И.О. Исаев, А.С. Алмакаева // Вестник МГСУ. – 2020. – Т. 15, № 12. – C. 1644–1653.
  70. Определение фактического коэффициента перебора (участок «Косино» – «Юго-Восточная») / А.З. Тер-Мартиросян, В.П. Кивлюк, И.О. Исаев, В.В. Шишкина // Construction and Geotechnics. – 2021. – Т. 12, № 2. – С. 5–14. doi: 10.15593/2224-9826/2021.2.01
  71. Фактическое значение коэффициента перебора для тоннелей в дисперсных и скальных грунтах / А.З. Тер-Мартиросян, Р.Х. Черкесов, И.О. Исаев, В.В. Рудь // Жилищное строительство. – 2023. – № 9. – С. 61–73.
  72. Тихонюк, И.А. Определение комплексного коэффициента перебора грунта при щитовой проходке метрополитена / И.А. Тихонюк, Ю.В. Филатов // Геотехника. – 2022. – Т. XIV, № 1. – С. 30–48. doi: 10.25296/2221-5514-2022-14-1-30-48
  73. Sharafutdinov, R.F. A study of the ground volume loss modeling technique influence the soil displacement in course of shield tunneling / R.F. Sharafutdinov, O.N. Isaev, D.S. Zakatov // Smart Geotechnics for Smart Societies. – 2023. – P. 1042–1051.
  74. Evaluation of lateral and axial deformation for earth pressure balance (EPB) tunnel construction using 3 dimension finite element method / F. Aldiamar, M. Irsyam, B. Hutapea, E. Susila, R. Nazir // Journal of Engineering and Technological Sciences. – 2021. – Vol. 53(5). – P. 210503.
  75. Çelik, S. Comparison of Mohr-Coulomb and Hardening Soil Models numerical estimation of ground surface settlement caused by tunneling / S. Çelik // Journal of the Institute of Science and Technology. – 2017. – Vol. 7 (4). – P. 95–102. doi: 10.21597/jist.2017.202
  76. Petrukhin, V.P. Modeling of deformations of the soil mass during tunneling. Part 1: Studies of the influence of calculated parameters (in Russian) / V.P. Petrukhin, O.N. Isaev, R.F. Sharafutdinov // Transport Construction. – 2014. – No. 9. – P. 7–11.
  77. Petrukhin, V.P. Modeling of deformations of the soil mass during tunneling. Part 2: Method of selection of numerical simulation parameters (in Russian) / V.P. Petrukhin, O.N. Isaev, R.F. Sharafutdinov // Transport Construction. – 2014. – No. 10. – P. 14–15.
  78. Glossop, N.H. Soil deformation caused by soft ground tunnelling. Ph.D. Thesis / N.H. Glossop. – University of Durham, 1978. – 313 p.
  79. Clough, G.W. Design and performance of excavations and tunnels in soft clay / G.W. Clough, B. Schmidt // Soft Clay engineering. – 1981. – P. 569–634.
  80. Mitchell, R.J. Earth structure engineering / R.J. Mitchell. – Boston: Allen and Unwin, 1983.
  81. Uriel, A.O. Selection of design parameters for underground construction / A.O. Uriel, C. Sagaseta // Proceedings of the 12th International Congress on Soils Mechanics, Río de Janeiro, 13–18 August 1989. General report, Discussion session. – Rotterdam: A.A. Balkema, 1989. – Vol. 9. – P. 2521–2551.
  82. Leca, E. Analysis of NATM and shield tunneling in soft ground. Ph.D. Thesis / E. Leca. – Virginia Polytechnic Institute and State University, 1989.
  83. Arioglu, E. Surface movements due to tunnelling activities in urban areas and minimization of building damages / E. Arioglu // Short Course. – Istanbul Technical University, Mining Engineering Department, 1992. – 43 p.
  84. Palmer, C.P. Ground movements above tunnels: a method for calculating volume loss / C.P. Palmer, R.J. Mair // Can Geotech J. – 2011. – Vol. 48(48). – P. 451–457.
  85. Mair, R.J. General report on settlement effects of bored tunnels. Session report, Geotechnical Aspects of Underground Construction in Soft Ground / R.J. Mair // Proceedings International Symposium, City University, London, 15-17 April 1996. – Rotterdam: Balkema, 1996. – P. 43–53.
  86. O’Reilly, M.P. Settlements above tunnels in the United Kingdom – Their magnitude and prediction / M.P. O’Reilly, B.M. New // Tunnelling. – 1982. – P. 173–181.
  87. Leblais, Y. Villejust tunnel: slurry shields effects on soft and lining behavior and comments on monitoring requirement / Y. Leblais, A. Bochon // Tunnelling. – 1991. – P. 65–77.
  88. Ground displacements in Madrid soils due to tunnel excavation with earth pressure TBM / M. Melis, M. Arnaiz, C.S. Oteo, F. Mendana // Proc. of the 14th International Conference on Soil Mechanics and Foundation Engineering. – Hamburg, 1997. – P. 1433–1436.
  89. Bowers, K.H. Settlement due to tunnelling on the CTRL London Tunnels / K.H. Bowers, N. Moss // Geotechnical Aspects of Underground Construction in Soft Ground. – Taylor & Francis, 2006. – P. 203–209.
  90. Mechanized tunnelling in urban areas: Design methodology and construction control / V. Guglielmetti, P. Grasso, A. Mahtab, S. Xu. // Geodata S.p.A. Turin, Italy, St Petersburg: Polytechnic university publishing house, 2008. – P. 602.
  91. Mair, R.J. Tunnelling and geotechnics: new horizons / R.J. Mair // Géotechnique. – 2008. – Vol. 58, no. 9. – P. 695–736.
  92. Netzel, H.D. Building response due to ground movements / H.D. Netzel. – Delft University of Technology, 2009.
  93. Fargnoli, V. TBM tunnelling-induced settlements in coarse-grained soils: the case of the new Milan underground line 5. 14 / V. Fargnoli, D. Boldini, A. Amorosi // Tunnelling and Underground Space Technology. – 2013. – Vol. 38. – P. 336–347.
  94. Tunnelling-induced deformation and damage on historical masonry structures / A. Amorosi, D. Boldini, G. De Felice, M. Malena, M. Sebastianelli // Géotechnique. – 2014. – Vol. 64(2). – P. 118–130.
  95. Zhang, Z.X. A case study on the behavior of shield tunneling in sandy cobble ground / Z.X. Zhang, H. Zhang, J.Y. Yan. – Springer-Verlag Berlin Heidelberg, 2012. – P. 1891–1900.
  96. Mahdi, S. Back analysis of ground settlements induced by TBM excavation for the north extension of Paris metro, line 12 / S. Mahdi, O. Gastebled, S. Khodr // World Tunnel Congress 2019 – Tunnels and Underground Cities: Engineering and Innovation meet Archaeology. – Naples: Taylor & Francis, 2019. – P. 2606–2615.
  97. Broms, B.B. Settlements caused by earth Pressure balance shields in Singapore / B.B. Broms, J.N. Shirlaw // Tunnels en Terrain Meuble – Du Chantier a la theorie. Proc. Nationale des Peuts et Chaussees. – Paris, 1989. – P. 209–229.
  98. Barakat, M. Measurement of ground settlements and building deformations due to tunnelling. Ph.D. thesis / M. Barakat. – Imperial College, 1996.
  99. Mair, R.J. Prediction of ground movements and assessment of risk of building damage due to bored tunneling / R.J. Mair, R.N. Taylor, J.B. Burland // Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. – 1996. – P. 713–718.
  100. Ledesma, A. Systematic backanalysis in tunnel excavation problems as a monitoring technique / A. Ledesma, E. Romero // Proceedings of the International Conference on Soil Mechanics and Foundation Engineering – International Society for Soil Mechanics and Foundation Engineering. – 1997. – Vol. 3. – P. 1425–1428.
  101. Chou, W.I. Predictions of ground deformations in shallow tunnels in clay / W.I. Chou, A. Bobet // Tunn. Undergr. Space Technol. – 2002. – Vol. 17 (1). – P. 3–19.
  102. Williamson, M.G. Tunnelling effects on bored piles in clay. Ph.D. Thesis / M.G. Williamson. – Cambridge University, 2014. – 426 p.
  103. Golpasand, M.R.B. Specifying the real value of volume loss (VL) and its effect on ground settlement due to excavation of Abuzar tunnel, Tehran / M.R.B. Golpasand, M.R. Nikudel, A. Uromeihy // Bull Eng Geol Environ. – 2016. – Vol. 75(2). – P. 485–501.
  104. Xie, X. Analysis of ground surface settlement induced by the construction of a large-diameter shield-driven tunnel in Shanghai, China / X. Xie, Y. Yang, J. Mei // Tunnelling and Underground Space Technology. – 2016. – Vol. 51. – P. 120–132.
  105. Negro, Jr.A. Tunnelling A in Sao Paulo, Brazil / Jr.A. Negro, L.E. Sozio, A.A. Ferreira // Geotechnical Aspects of Underground Construction in Soft Ground. – Rotterdam: Balkema, 1996. – P. 295–300.
  106. Kavvadas, M.J. Experiences from the construction of the Athens Metro project / M.J. Kavvadas // Proc. 12th European Conference of Soil Mechanics and Geotechnical Engineering, Amsterdam, June 1999, Invited Lecture. – 1999. – Vol. 3. – P. 1665–1676.
  107. Immediate settlements due to tunnelling for the North East Line / J.N. Shirlaw [et al.] // Underground Singapore. – 2001. – P. 76–90.
  108. Lim, K.C. Numerical Fitting Attempts of Tunnelling-Induced Ground Movement in Granitic Residual Soil / K.C. Lim, F.H. Lee, K.K. Phoon // Underground Singapore. – 2003. – P. 196–203.
  109. Unlutepe, A. Predicted and observed ground deformations due to TBM tunnel excavations on the Izmir metro project (stage 1) / A. Unlutepe, V. Tellioglu, B. Arioglu // Conference: ITA-AITES World Tunnel Congress, Budapest, Hungary, 2009. – Vol.: O-06-01.
  110. Ercelebi, S.G. Surface settlement predictions for Istanbul Metro tunnels excavated by EPB-TBM / S.G. Ercelebi, H. Copur, I. Ocak // Environ Earth Sci. – 2011. – Vol. 62(2). – P. 357–365.
  111. Attewell, P.B. Predicting the Dynamics of ground settlement and its Derivatives caused by tunnelling in soil / P.B. Attewell, J.P. Woodman // Ground Engineering. – 1982. – No. 15(8). – P. 13–22.
  112. Rankin W.J. Ground movements resulting from urban tunnelling: predictions and effects / W.J. Rankin // Engineering Geology of Underground Movement, Geological Society, Engineering Geology Special Publication. – 1988. – No. 5. – P. 79–92.
  113. Mair, R.J. Subsurface settlement profiles above tunnels in clays / R.J. Mair, R.N. Taylor, A. Bracegirdle // Geotechnique. – 1993. – Vol. 43. – P. 315–320.
  114. Jones, B. Low-volume-loss tunnelling for London ring main extension / B. Jones // Proceedings of the ICE – Geotechnical Engineering. – 2010. –Vol. 163(3). – P. 167–185.
  115. Lunne, T. Role of CPT in North Sea foundation engineering / T. Lunne, A. Kleven // Proceedings of Geotechnical Engineering division Session, ASCE National Convention, St. Louis, Missouri. – 1981. – P. 76–107.
  116. Lunne, T. Cone Penetration Testing in Geotechnical Practice / T. Lunne, P.K. Robertson, J.J.M. Powell. – London: Blackie Academic & Professional, 1997. – 312 p.
  117. Kjekstad, O. Installation of the Elf TCP-2 Condeep platform at the Frigg field / O. Kjekstad, F. Stub // Proc. Eur. Offshore Petrol. Conf., London. – 1978. – Vol. 1. – P. 121.
  118. Болдырев Г.Г. Руководство по интерпретации данных испытаний методами статического и динамического зондирования для геотехнического проектирования / Г.Г. Балдырев. – М.: ООО «Прондо», 2017. – 476 с.
  119. Tresca, H. Mémoire sur l'écoulement des corps solides soumis à de fortes pressions / H. Tresca // C.R. Acad. Sci. – Paris. – 1864 – Vol. 59. – P. 754.
  120. Skempton, A.W. The Post-Glacial Clays of the Thames Estuary at Tillbury and Shellhaven / A.W. Skempton, D.J. Henkel // Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering, Zurich. – 1953. – Vol. 1. – P. 302–308.

Statistics

Views

Abstract - 7

PDF (Russian) - 2

Refbacks

  • There are currently no refbacks.

Copyright (c) 2025 Ter-Martirosyan A.Z., Tikhoniuk I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies