Oedometer to study of peat stabilization techniques
- Authors: Ivakhnova G.Y.1, Tutygin A.S1, Nevzorov A.L1
- Affiliations:
- Northern (Arctic) Federal University named after M.V. Lomonosov (NArFU), Arkhangelsk, Russian Federation
- Issue: Vol 16, No 3 (2025)
- Pages: 5-13
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/CG/article/view/4677
- DOI: https://doi.org/10.15593/2224-9826/2025.3.01
- Cite item
Abstract
This paper presents a new oedometer to study of peat compressibility and techniques of its stabilization under embankment. The dimensions of oedometer’s ring are more than in traditional one: diameter 14.8 cm, height 7.0 cm. The pore water is escaped from a sample only through a perforated loading plate. During testing, for example at the secondary consolidation stage, a plate is fixed by special screws and the oedometer is removed from loading frame and turned over. The plugs are unscrewed from the holes located in the device bottom and a stabilization substance is embedded into peat sample through all or part of the holes located symmetrically relative to each other. After that the oedometer is returned to loading frame and deformation measurement is continued. Due to the elimination of even temporary peat unloading and expansion the oedometer is allowed to make more accurate and reliable prediction of deformations after embedding a stabilizer into peat layer under embankment.The studied peat had the following properties: density 0.98–1.02 g/cm3, water content 770–920%, void ratio 11.8–14.2, decomposition degree 40–45%. Bentonite which sorbs water from micropores of peat in terms of swelling process was used as the stabilizer substance. The initial water content of bentonite was equal 6 %, free swell was reached 95 %, water content after swelling 138 %. The test results showed that embedding of bentonite in an amount of 10 % of the sample volume makes it possible to stabilize deformation of peat. The addition of cement to bentonite prevents the development of settlement with a significant increase in the load from the embankment after stabilization.
Full Text
1About the authors
G. Yu Ivakhnova
Northern (Arctic) Federal University named after M.V. Lomonosov (NArFU), Arkhangelsk, Russian Federation
A. S Tutygin
Northern (Arctic) Federal University named after M.V. Lomonosov (NArFU), Arkhangelsk, Russian Federation
A. L Nevzorov
Northern (Arctic) Federal University named after M.V. Lomonosov (NArFU), Arkhangelsk, Russian Federation
References
- Tyurin, D.A. Numerical simulation of long-term peat settlement under the sand embankment / D.A. Tyurin, A.L. Nevzorov // 1st International Conference on the material point method. Procedia engineering. – 2017. – Vol. 175. – P. 51–56.
- Димухаметов, М.Ш. Физико-механические свойства заторфованных грунтов Камской долины г. Перми и их изменение в результате действия пригрузки / М.Ш. Димухаметов, Д.М. Димухаметов // Вестник Пермского университета. Геология. – 2009. – №11(37). – С. 94–107.
- Ivakhnova, G.Yu. The acceleration of the peat secondary consolidation due to the sorption of bound water with disperse clay / G.Yu. Ivakhnova, A.L. Nevzorov // IOP Conf. Series: Materials Science and Engineering. – 2020. – Vol. 945. – 012051. doi: 10.1088/1757-899X/945/1/012051.
- Амарян, Л.С. Свойства слабых грунтов и методы их изучения / Л.С. Амарян. – М.: Недра, 1999. – 220 с.
- Gofar, N. Long-term compression behavior of fibrous peat / N. Gofar, Y. Sutejo // Malaysian J. of Civil Eng. – 2007. – № 19. – P. 104–116.
- Kogure, K. Physical and pore properties of fibrous peat deposit / K. Kogure, H. Yama-guchi, T. Shogaki // Proceedings of the 11th Southeast Asian Geotechnical Conference, Singapore, 1993. – P. 135–139.
- Wong, L.S. A review on hydraulic conductivity and compressibility of peat / L.S. Wong, R. Hashim, F.H. Ali // Journal of Applied Sciences. – 2009. – № 9 (18). – P. 3207–3218.
- Zhang, L. Effect of salt grain additions on fibrous peat consolidation / L. Zhang, B.C. O’Kelly // Proceeding of the institution of civil engineers. – 2015 – № 168. – P. 14–21.
- Носков, И.В. Исследования компрессионных свойств торфа как материала для устройства оснований зданий и сооружений на заболоченных территориях / И.В. Носков, С.А. Ананьев, М.А. Осипова // Вестник Евразийской науки. – 2021. – №2 (13).
- A study of the compressibility behavior of peat stabilized by DMM: Lab Model and FE analysis / B.B.K. Huat, S. Kazemian, A. Prasad, M. Barghchi // Scientific Research and Essays. – 2011. – Vol. 6, iss. 1. – P. 196–204.
- Hashim, R. Properties of stabilized peat by soil-cement column method / R. Hashim, M.S. Islam // Electronic Journal of Geotechnical Engineering. – 2008. – №13. – P. 1–9.
- Nadhirah, M.Z. Peat Soil Stabilization using Lime and Cement / M.Z. Nadhirah, Md.G. Zuhayr // E3S Web of Conferences, 34. – 2018. doi: 10.1051/e3sconf/20183401034.
- Kalantari, B. Load-Bearing capacity improvement for peat soil / B. Kalantari, B.B.K. Huat // European Journal of Scientific Research. – 2009. – Vol. 32, no. 2. – P. 252–259.
- Islam, S. Stabilization of peat by deep mixing method: a critical review of the state of practices / S. Islam, R. Hashim // Electronic Journal of Geotechnical Engineering. – 2008. – Vol. 13.
- A state-of-the-art review of polymers used in soil stabilization / H.J. Jianxin, R.B. Kogbara, N. Hariharan, E.A. Masad, D.N. Little // Construction and Building Materials. – 2021 – Vol. 305. – 124685. doi: 10.1016/j.conbuildmat.2021.124685.
- Venuja, S. Geotechnical engineering properties of peat, stabilized with a combination of fly ash and well graded sand / S. Venuja, S. Mathiluxsan, M.C. Nasvi // Engineer: Journal of the Institution of Engineers. – 2017. – Vol. 50, iss. 2. – P. 21. doi: 10.4038/engineer.v50i2.7249.
- Borthakur, N. Stabilization of peat soil using locally available admixture / N. Borthakur, M.S. Sindh // International Journal of Advances in Computer Science & Its Applications. – 2014. – Vol. 4, iss. 4. – P. 227–231.
- Kolay, P.K. Peat stabilization using gypsum and fly ash / P.K. Kolay, M.P. Pui // Journal of Civil Engineering, Science and Technology. – 2010. – Vol. 1, iss. 2. – P. 1–5. doi: 10.33736/jcest.75.2010.
- Abdel-Salam, A.E. Stabilization of peat soil using locally admixture / A.E. Abdel-Salam // HBRC Journal. – 2018. – Vol. 14, iss. 3. – P. 294–299. doi: 10.1016/j.hbrcj.2016.11.004.
- Шенкман, Р.И. Метод расчета осадок фундаментов на основании, улучшенном с использованием вертикальных грунтовых элементов в оболочке из геосинтетических материалов / Р.И. Шенкман, А.Б. Пономарев // Construction and Geotechnics. – 2020. – Т. 11, № 3. – С. 64–76. doi: 10.15593/2224-9826/2020.3.06.
- Wong, L.S. A review of experimental investigations of peat stabilization / L.S. Wong, R. Hashim, F.H. Ali //Australian Journal of Basic and Applied Sciences. – 2009. – Vol. 3(4). – P. 3537–3552.
- Stabilization of road embankmentson peat soils using oil shale ash and pozzolanic additives / V. Pallav, T. Teppand, A. Leinpuu, M. Shanskiy, M. Mets, H. Maendar, E. Rikmann, J. Liiv // Appl. Sci. – 2023. – Vol. 13. – 8366. doi: 10.3390/app13148366/
- Ивахнова, Г.Ю. Воздействие на ход вторичной консолидации торфа путем его дегидратации с помощью высокодисперсной глины / Г.Ю. Ивахнова, А.Л. Невзоров // Вестник МГСУ. – 2023. – Т.18, вып. 2. – С. 218–229. doi: 10.22227/1997-0935.2023.2.218-229.
Statistics
Views
Abstract - 18
PDF (Russian) - 16
Refbacks
- There are currently no refbacks.