ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРОКЛАДКИ ТЕПЛОТРАССЫ НА СОСТОЯНИЕ ОСНОВАНИЯ ДОРОЖНОЙ ОДЕЖДЫ АВТОМОБИЛЬНОЙ ДОРОГИ

Аннотация


Представлен способ предотвращения деформаций линейных сооружений в связи с прокладкой теплосети, которая способствует образованию наледи. Рассматриваемая конструкция покрытия дорожной одежды при прокладке теплосети возводится на участке автомобильной дороги по ул. Пионерская, который относится к дорогам III категории. Приведены результаты научных исследований и инженерных расчетов параметров рациональных конструкций автомобильных дорог при прокладке теплосети на примере Дальневосточного участка автодороги. Разработка представляет собой обобщение результатов решения инженерных, научных и расчетно-прикладных задач. На рассматриваемом участке прокладывается теплосеть, которая впоследствии будет прогревать наружную поверхность асфальтобетона за счет тепловыделений труб, что вызовет образование наледи на наружной поверхности асфальтобетона в период с отрицательными температурами. Конструкция включает в себя псевдоплиту в слоях щебня с использованием интегральной двухосной георешетки, а также теплоизоляционный слой. В процессе анализа исходных данных и при выполнении работы установлено, что для возможности оценки и сравнения показателей необходимо предусмотреть расчетно-теоретические исследования для нескольких вариантов конструкций. При анализе возможных методов и средств для определения рациональных параметров конструкции целесообразным будет использование геотехнических программных комплексов FEM models и Termoground, способных в комплексе моделировать работу сооружений по его напряженному состоянию, а также по происходящим термодинамическим процессам в годичном цикле промерзания-оттаивания. Выполненное численное моделирование работы конструкции с использованием данного программного геотехнического комплекса позволило дать оценку стабильности деформаций конструкции, а также ограничению прогрева теплоносителем поверхности асфальтобетона.

Полный текст

Введение Прокладка теплотрасс под автомобильными дорогами в районах с сезонным промерзанием и оттаиванием всегда имеет высокую степень рисков, связанных с возникновением недопустимых деформаций вследствие прогрева поверхности автодороги в период с отрицательными температурами [1]. Особенно это относится к линейным транспортным объектам, требующим повышенного уровня надежности и ответственности. Подобные сооружения должны обеспечивать допускаемую деформативность и несущую способность оснований при воздействии перспективных подвижных нагрузок в сложных геологических и природно-климатических условиях Одним из рациональных решений основных вопросов, связанных прокладкой теплотрасс в регионах со сложными геологическими и природно-климатическим условиями, является научно и технически обоснованное использование свойств современных геосинтетических материалов, способных обеспечивать долговременную устойчивую работу сооружений при применении местных строительных материалов [2]. При этом свойства используемых геосинтетических материалов должны полностью соответствовать требованиям условий их работы в сооружениях, а также условию долговечности и качества. Разработанные конструктивные решения должны удовлетворять требованиям нормативных документов по прочности и морозоустойчивости, действующих на территории Российской Федерации. Кроме этого, конструкция сооружения должна обеспечивать несущую способность при воздействии заданных подвижных нагрузок. Сложность рассматриваемого участка автомобильной дороги по ул. Пионерская в г. Хабаровске (в Хабаровском крае) связана с наличием сезонного промерзания и оттаивания и, как следствие, изменением их температурно-влажностного режима, что необходимо учитывать при проектировании и строительстве [3, 4]. Кроме того, из-за вероятности возникновения особых обстоятельств к рассмотрению принята высокая нагрузка на дорожное полотно (рис. 1). В качестве примера рассмотрена нагрузка на оси автопоезда Renault грузоподъемностью 47 т, имеющего 5 осей, колея 2 м. Рис. 1. Распределение нагрузки на оси автопоезда Fig. 1. Load distribution on trailer axles При определении необходимой толщины теплоизоляционного слоя для предотвращения прогрева наружной поверхности асфальтобетона за счет тепловыделений труб тепловой сети и исключения образования наледи на наружной поверхности асфальтобетона в период с отрицательными температурами принять температуру теплоносителя (воды) T = 130 °С. Допустимая температура прогрева наружной поверхности асфальтобетона в период с отрицательными температурами асфальтобетона не более -4 °С. В связи с этим необходима разработка конструкции покрытия дорожной одежды при прокладке теплосети для исключения образования деформаций и наледи на поверхности автодороги [5, 6]. 1. Методика геотехнического моделирования 1.1. Численная реализация упругопластической модели слоистых оснований Идеализация модели грунтового основания осуществляется следующим образом. Если при внешнем воздействии нагрузок напряжение грунта «характерного объема» меньше предельного (σ ≠ σпр), то связь между напряжениями и деформациями описывается законом Гука (рис. 2, область I), который для условий плоской деформации может быть записан в виде (1) Здесь и - плоские аналоги модуля Юнга Е и коэффициента Пуассона Рис. 2. Схема к определению теоретических напряжений в упругопластической модели грунта Fig. 2. Scheme for the determination of theoretical stresses in the elastoplastic model of soil Предельные напряжения в области растяжения ограничиваются прочностью на растяжение σр (см. рис. 2). Таким образом, область I в зоне растяжения ограничивается напряжением (σ3 = σр), а в области сжатия - критерием прочности Кулона: (2) Здесь Rc - прочность на одноосное сжатие. Если точка оказывается вне контура текучести, то находятся «теоретические» напряжения в следующем порядке. Если точка суммарных напряжений MII попадает в область II (основная зона пластичности), то «теоретическая» точка лежит на пересечении границы текучести с прямой . Угол b наклона прямой определяется законом сечения и задан. Если точка суммарных напряжений попадает в зону III (см. рис. 2, точка MIII), то теоретические напряжения принимают значения Элемент при этом будет разорван в направлении действия напряжения σ3, а напряжения σ1 снизятся до уровня сопротивления грунта на одноосное сжатие. Для области IV, в которой напряжения σ1 не превосходят сопротивление одноосному сжатию, Наконец, для области V, у которой элемент будет разорван по всем направлениям, В программе FEM Models природное напряженное состояние заменяется гидротехническим тензором обжатия «характерного объема» грунта, который суммируется с фактическими напряжениями в массиве: (3) Принятое нами допущение отвечает реальной картине природного напряженного состояния слабых грунтов [7, 8]. 1.2. Численная реализация теплофизического моделирования Составной частью FEM-models является программа Termoground, которая позволяет исследовать с помощью численного моделирования в пространственной постановке процессы промерзания, морозного пучения и оттаивания в годичном цикле методом конечных элементов. Общее уравнение, описывающее процесс промерзания-оттаивания для нестационарного теплового режима в трехмерном грунтовом пространстве, можно представить в виде следующего выражения: (4) где - удельная теплоемкость грунтов (мерзлого или талого); r - плотность грунта; Т - температура; t - время; - теплопроводность грунтов (мерзлого или талого); x, y, z - координаты; qv - мощность внутренних источников тепла. Основными факторами, определяющими приведенные температуры на поверхности элементов земляного полотна и примыкающей местности, являются температура атмосферного воздуха и условия его теплообмена с поверхностью, зависящие от ветрового режима, солнечной радиации, испарения и т.д. [9, 10]. Расчетная величина приведенной среднемесячной температуры воздуха определена по формуле , (5) где - среднемесячная температура воздуха, °С; и - поправки к среднемесячным температурам воздуха за счет солнечной радиации и испарения, °С. 2. Геотехническое моделирование конструкции автомобильной дороги Выполнено геотехническое моделирование состояния покрытия дорожной одежды после прокладки железобетонной плиты над проложенной теплотрассой. Получена близкая к реальной картина местонахождения зон распространения упругих деформаций и опасных зон с пластическими деформациями (рис. 3-5). При математическом моделировании получены численные значения и их распределение в конструкции, а также прямой показатель - деформации и их распределение в поперечных сечениях [11, 12]. Проведенное моделирование термодинамических процессов обусловлено необходимостью получения качественной и количественной картины промерзания-оттаивания в сооружении в годичном и более цикле. Численное моделирование промерзания-оттаивания конструкции выполнялось помесячно. Расчетная схема представлена на рис. 6. В результате установлено, что поверхность дорожной одежды подвержена неравномерным деформациям в связи с различной жесткостью основания на рассматриваемом участке [13]. Анализ результатов геотехнического моделирования конструкции показал, что зоны пластических деформаций распространены повсеместно в щебне и песчано-гравийной смеси, в местах переменной жесткости конструкции между железобетонной плитой и существующей дорожной одеждой, что свидетельствует о недостаточной несущей способности дорожной конструкции. Рис. 3. Расчетная схема конструкции: 1 - асфальтобетон трехслойный; 2 - щебень М600; 3 - плита; 4 - полистирол; 5 - песчано-гравийная смесь; 6 - подстилающий слой дорожной одежды Fig. 3. Calculation scheme of the facility: 1 - three-layer asphalt concrete; 2 - breakstone М600; 3 - plate; 4 - polystyrene; 5 - sand and gravel composition; 6 - underlying pavement layer Рис. 4. Зоны упругих и пластических деформаций: синий цвет - упругие деформации; красный цвет - пластические деформации Fig. 4. Area of elastic and plastic deformations: blue color - elastic deformations; red color - plastic deformations Рис. 5. Вертикальные деформации поверхности автодороги, м Fig. 5. Vertical deformations of the road surface, m Рис. 6. Эпюра температур на поверхности асфальтобетона в период отрицательных температур (март), °С Fig. 6. Temperature plot on the surface of asphalt concrete during the period of negative temperatures (March), °С Для уменьшения или практически полной остановки пластических деформаций, а также для перераспределения напряжений с целью предотвращения неравномерных деформаций следует предусматривать прослойки, способствующие увеличению несущей способности основания и перераспределяющие напряжения [14]. Такой прослойкой может быть щебеночная псевдоплита, где композитообразующим элементом является интегральная двухосная георешетка [15]. Для снижения риска неравномерных деформаций грунта от теплового воздействия теплотрассы необходимо предусмотреть комплекс мероприятий по снижению оттаивания грунта в периоды с отрицательной температурой асфальтобетона (использование теплоизоляторов). Выполнено геотехническое моделирование состояния покрытия дорожной одежды после кладки железобетонной плиты над проложенной теплотрассой с применением геосинтетических геоматериалов в щебне и теплоизоляционных материалов (рис. 7-10). Рис. 7. Расчетная схема конструкции: 1 - асфальтобетон трехслойный; 2 - щебень М600; 3 - плита; 4 - полистирол; 5 - песчано-гравийная смесь; 6 - подстилающий слой дорожной одежды; 7 - георешетка Fig. 7. Calculation scheme of the facility: 1 - three-layer asphalt concrete; 2 - breakstone М600; 3 - plate; 4 - polystyrene; 5 - sand and gravel composition; 6 - underlying pavement layer; 7 - geogrid Рис. 8. Зоны упругих и пластических деформаций: синий цвет - упругие деформации; красный цвет - пластические деформации Fig. 8. Area of elastic and plastic deformations: blue color - elastic deformations; red color - plastic deformations Рис. 9. Вертикальные деформации поверхности автодороги, м Fig. 9. Vertical deformations of the road surface, m Рис. 10. Эпюра температур на поверхности асфальтобетона в период отрицательных температур (март), °С Fig. 10. Temperature plot on the surface of asphalt concrete during the period of negative temperatures (March), °С Заключение 1. Зоны пластических деформаций в щебне и песчано-гравийной смеси, в местах переменной жесткости конструкции между железобетонной плитой и существующей дорожной одеждой значительно снизились, что свидетельствует об эффективности применения выбранных мероприятий. 2. При рассмотрении полученных вертикальных деформаций конструкции дорожной одежды можно сделать вывод о том, что деформации поверхности дорожной одежды сократились и перераспределение напряжений созданием псевдоплиты привело к устранению просадок в местах различной жесткости конструкции. 3. При укладке теплоизоляционного покрытия величины температур наружной поверхности асфальтобетона соответствуют допустимой температуре прогрева наружной поверхности асфальтобетона в период с отрицательными температурами. Толщина теплоизоляционного материала, определенная расчетом, составляет 10 см. 4. Применение современных геотехнологий и новых геосинтетических материалов в строительстве имеет сегодня прогрессивную тенденцию. Они во многом являются экономически более выгодной и надежной альтернативой традиционным решениям. Поэтому всесторонние исследования в области рационального использования возможностей геосинтетических материалов при их работе в грунтовых средах, разработка новых конструкций и расчетных методик, а также поиск совершенных подходов к решениям таких задач современной геотехники в настоящее время значимы и актуальны.

Об авторах

С. А Кудрявцев

Дальневосточный государственный университет путей сообщения

Т. Ю Вальцева

Дальневосточный государственный университет путей сообщения

Список литературы

  1. Влияние условий оттаивания и вида испытаний на деформационные характеристики оттаивающих грунтов / П.И. Котов, Л.Т. Роман, И.И. Сахаров, В.Н. Парамонов, М.В. Парамонов // Основания и фундаменты, механика грунтов. - 2015. - № 5. - С. 8-13.
  2. Abrashitov A., Sidrakov A. Laboratory study of ballast material reinforced by flat geogrid under the dynamic load, MATEC Web of Conferences. - 2019. - Vol. 265. - 01006. DOI: https://doi.org/10.1051/matecconf/201926501006
  3. Ulitsky V., Sakharov I., Paramonov V. Thermal-physical calculations as a basis of design solutions of buildings and structures in the permafrost zone, MATEC Web of Conferences. - 2019. - Vol. 265. - 05009. DOI: https://doi.org/10.1051/matecconf/201926505009
  4. Сахаров И.И., Парамонов В.Н., Парамонов М.В. Процессы промерзания и оттаивания при устройстве подземных и заглубленных сооружений // Жилищное строительство. - 2009. - № 9. - С. 21-23.
  5. Ершов Э.Д. Деградация мерзлоты при возможном глобальном потеплении климата // Соросовский образовательный журнал. - 1997. - № 2. - С. 23-27.
  6. Пасек В.В. Тепловое воздействие гофрированных водопропускных труб большого диаметра с вечномерзлыми грунтами тела и оснований земполотна железных и автомобильных дорог // 5-й Междунар. симп. по проблемам инженерного мерзлотоведения. - Якутск, 2002. - Т. 2. - С. 94-98.
  7. Парамонов В.Н. Метод конечных элементов при решении нелинейных задач геотехники. - СПб.: Геореконструкция, 2012. - 262 с.
  8. Справочник геотехника. Основания, фундаменты и подземные сооружения / под общ. ред. В.А. Ильичева, Р.А. Мангушева. - М.: Изд-во АСВ, 2014. - 728 с.
  9. Парамонов М.В. Напряженно-деформированное состояние системы «основание - сооружение» при неодномерном промерзании: автореф. дис. … канд. техн. наук. - СПб., 2013. - 24 с.
  10. Парамонов М.В. Исследование линейных и объемных деформаций морозного пучения в лабораторных условиях // Вестник гражданских инженеров. - 2012. - № 6 (35). - С. 84-86.
  11. Ulitskii V.M., Shashkin A.G. Successful construction of high-speed motorways: the geotechnical constituent // Transport of the Russian Federation. - 2016. - № 2-3. - Р. 36-39.
  12. Парамонов В.Н., Набоков А.В. Особенности конечноэлементного моделирования деформаций морозного пучения и оттаивания грунтов // Взаимодействие оснований и сооружений. Подземные сооружения и подпорные стены: междунар. конф. по геотехнике Технического комитета 207 ISSMGE. - СПб., 2014. - Т. 2. - С. 65-69.
  13. Kudruavtsev S.A., Valtseva T.Y. The use of geosynthetic materials in special engineering geological conditions of the Far East // Proceding 11th ICG - International Conference on Geosynthetics, 16-21 September. - Seoul, Korea, 2018. - P. 321-326
  14. Strengthening design for weak base using geomaterials on “Amur” automobile road section Internationa / S.A. Kudruavtsev, T.Y. Valtseva, A.V. Kazharsky, E.D. Goncharova // Scentific Conference Energy Manegement of Municipal Transportation Facicties Transport EMMFT 2017. Advances in Intelligent Systems and Computing - Springer International Publishing AG, 2017. - P. 145-153.
  15. Geosynthetical materials in design of highways in cold regions Far East / S.A. Kudruavtsev, T.Y. Valtseva, E.D. Goncharova, Zh.I. Kotenko, A.V. Peters, S.A. Bugunov // 5th International Conference on Road and Rail Infrastructure, 17-19 May. - Zadar, Croatia, 2018. - P. 233-240. DOI: https://doi.org/10.5592/CO/CETRA2018.953

Статистика

Просмотры

Аннотация - 595

PDF (Russian) - 215

Ссылки

  • Ссылки не определены.

© Кудрявцев С.А., Вальцева Т.Ю., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах