ПРИЧИНЫ ДЕФОРМАЦИИ ФУНДАМЕНТНЫХ КОНСТРУКЦИЙ ПАССАЖИРСКОГО ТЕРМИНАЛА АЭРОПОРТА «СОКОЛ» (Г. МАГАДАН)
- Авторы: Власов В.П1,2, Болотин А.В1, Сергеев С.М1, Лунегова А.А1
- Учреждения:
- Северо-Восточный государственный университет
- Институт мерзлотоведения СО РАН
- Выпуск: Том 11, № 1 (2020)
- Страницы: 68-79
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/CG/article/view/716
- DOI: https://doi.org/10.15593/2224-9826/2020.1.07
- Цитировать
Аннотация
Основной целью реконструкции аэропорта «Сокол» является обеспечение соответствия инженерной инфраструктуры современным требованиям обслуживания авиаперевозок и транспортной безопасности. На наш взгляд, в список объектов реконструкции, в который сейчас входят перрон, светосигнальное оборудование, два контрольно-пропускных пункта, система освещения мест стоянок воздушных судов, сети водоснабжения, связи, тепла, периметровое ограждение и др., в обязательном порядке должен войти и пассажирский терминал. Пока он в указанном списке отсутствует. В статье рассматривается проблема определения надежности и дальнейшей эксплуатационной пригодности основания и фундаментов пассажирского терминала в магаданском аэропорту «Сокол» со сроком службы более 50 лет. В этой связи дается краткое описание природных условий территории размещения указанного объекта. Особенность района строительства состоит в его сейсмичности (до 8 баллов), глубоком сезонном промерзании и островном распространении многолетнемерзлых грунтов. Проблема обусловлена тем, что это здание, состоящее из двух самостоятельных блоков, каждый из которых возводился в разные годы на разных видах свайных фундаментов, практически после ввода их в эксплуатацию начинал подвергаться деформациям. Эти деформации проявлялись и проявляются сейчас на наружных и внутренних стенах в виде трещин разных размеров. Попытка определения их причин производилась в период осуществления строительства второй половины здания, но она совпала по срокам с распадом СССР, поэтому не была доведена до логического конца. Объект сдан в эксплуатацию без исправления имеющихся ошибок в устройстве основания и фундаментных конструкций, а также необходимых в таких случаях укрепительных мероприятий. В дальнейшем здесь ограничивались лишь периодическим косметическим ремонтом и выводом из эксплуатации наиболее опасных для посещения помещений. В представленной работе дается оценка весьма сложных природных условий территории (климат, островная деградирующая мерзлота, сейсмика), где более полувека функционирует аэропорт «Сокол». За это время многие объекты его инженерной инфраструктуры в результате негативного взаимодействия с окружающей средой получили заметный физический и моральный износ. К ним относится и пассажирский терминал. В этой связи они практически все нуждаются в современной модернизации и реконструкции, тем более что аэропорт «Сокол» получил международный статус федерального значения. В статье обосновывается необходимость геотехнического обследования основания и фундаментов деформирующегося здания. Выполнение этой работы обусловлено предполагаемым перепрофилированием проблемного сооружения под грузовой терминал. Результаты обследования будут использованы при проектировании нового пассажирского терминала.
Полный текст
Введение Федеральный аэропорт «Сокол» (рис. 1), имеющий статус международного, расположен в Магаданской области близ поселка Сокол, к северу от города Магадана на 56 км Колымской трассы. Район строительства относится к зоне островного распространения высокотемпературных многолетнемерзлых пород (ММП) с глубоким сезонным промерзанием поверхностного слоя. Климат территории - умеренно-континентальный, носящий морские черты. Район отличается повышенной сейсмической активностью [1]. Согласно СП14.13330.2011 «Строительство в сейсмических районах», актуализированная редакция СНиП II-7-81*, и исследованиям СВКНИИ ДВО РАН [2] здесь возможны землетрясения амплитудой до 8-9 баллов. Рис. 1. Фасад федерального международного аэропорта «Сокол» Fig. 1. Facade of the federal international airport "Sokol" Известно, что некоторые инженерные объекты аэропорта в течение длительного времени испытывают весьма опасные деформации. Среди этих сооружений находится и пассажирский терминал, являющийся зданием с повышенной ответственностью ввиду достаточно большого единовременного скопления людей [3, 4]. В соответствии с требованиями СП 47.13330.2012 «Инженерные изыскания для строительства. Основные положения», актуализированная редакция СНиП 11-02-96 и СП 11-105-97 «Инженерно-геологические изыскания для строительства. Часть I. Общие правила производства работ» такие здания одними из первых периодически должны подлежать геотехническому обследованию на предмет их дальнейшей эксплуатационной пригодности. Предметами предлагаемого авторами обследования являются основания, фундаменты и надземные конструкции деформирующегося здания аэровокзала - пассажирского терминала в аэропорту «Сокол» (г. Магадан). 1. Основная часть В геоморфологическом отношении территория аэропорта приурочена к первой правой надпойменной террасе р. Уптар. С юга и севера площадка окаймлена грядами сопок, отдельные высоты которых достигают 1000-1200 м от уровня Охотского моря. От аэропорта сопки находятся на расстоянии 7-8 км [5]. Основной водной артерией района является р. Уптар, протекающая в 1,5 км от центра площадки. Ширина реки 15-20 м, глубина 1,5-2 м, высота берегов до 2-3 м, средняя скорость течения 1,5 м/с. Река меандрирует, в районе аэропорта течет в юго-западном направлении [6]. Кроме указанной реки, на данном участке местности протекают три крупных ручья, которые до отвода русел пересекали будущую территорию аэропорта с востока и с запада. Эти ручьи имеют горный характер, текут с севера на юг и впадают в р. Уптар. Согласно предпостроечным изысканиям [7] в геологическом строении территории принимают участие рыхлые четвертичные образования и коренные породы мелового возраста. Коренные породы представлены трещиноватыми выветрелыми гранодиоритами. Четвертичные отложения характеризуются развитием аллювиальных и делювиальных образований. В аллювиальных образованиях преобладают пески, гравийно-галечниковые грунты на песчаном и супесчаном заполнителе с примесью щебня и дресвы. Делювиальные отложения образовались за счет выветривания гранодиоритов и представлены щебнем, дресвой, песками и суглинком с высоким содержанием пылеватых частиц (рис. 2). Рис. 2. Обобщенный мерзлотно-геологический разрез свайного основания Fig. 2. Generalized permafrost-geological section of a pile foundation Площадка аэропорта, в период ее строительного освоения, в геокриологическом отношении характеризовалась развитием островного, линзового залегания ММП среди талых грунтов. Температура мерзлых пород колебалась от 0 до -1,5 °С. Размеры изолированных линз и островов ММП в плане были весьма различны, а их мощность изменялась от 1 до 15 м. Среди талых грунтов имелись также и перелетки на глубинах 3-5 м, причем участки с перелетками встречались чаще, чем острова многолетней мерзлоты. Площадь перелетков была также значительно больше площади островов и линз ММП. Глубина сезонного промерзания грунтов здесь варьируется от 2,5 до 3,5 м, но бывает и до 4,5-5 м. Породы этого слоя, как правило, обладают пучинистыми свойствами при промерзании. Криогенная текстура подстилающих ММП в основном массивная, но имеются участки со слоистой и сетчатой текстурой [8]. В ММП встречались линзы и ледяные прослойки толщиной 1-2-5 и даже 10 см, а в отдельных случаях - большие прослои льда, достигавшие мощности в 1,5-2,3 м. Какого-либо углубленного изучения геокриологических условий и свойств грунтов при проведении предпостроечных изысканий и позднее на рассматриваемой территории не проводилось. Аэропорт, построенный на площадке с описанными выше мерзлотно-геологическими условиями, функционирует с начала 1960-х гг. и практически с этого времени находится в состоянии либо ремонтных работ, либо постоянной реконструкции. Проблема заключается в том, что на его территории выявлено немало инженерных сооружений, подверженных или подвергавшихся ранее осадочным деформациям (рис. 3). Рис. 3. Деформации покрытия площади перед аэропортом Fig. 3. Deformation of the area in front of the airport Такие изменения грунтов нередко приобретали весьма опасный характер для эксплуатируемых объектов строительства. Особенно остро проблема для объекта обследования обозначилась в настоящее время, поскольку это здание нуждается в радикальной реконструкции и модернизации, соответствующим современным требованиям к подобному виду зданий. В настоящее время пристальное внимание специалистов, наблюдающих за сооружениями с осадочными деформациями, привлекает здание пассажирского терминала (рис. 4). Оно представляет собой сооружение антрессольно-павильонного типа и состоит из двух основных блоков, которые вводились в эксплуатацию с разницей примерно в 16 лет. Проектирование оснований и фундаментов здания осуществлялось по принципу II СП 25.13330.2012 «Основания и фундаменты на вечномерзлых грунтах», актуализированная редакция СНиП 2.02.04-88 и инструкций по проектированию и устройству свайных фундаментов в г. Магадане на сваях, местный опыт применения которых обобщен и изложен в работах [9, 10]. Упомянутые здесь ведомственные строительные нормы в настоящее время переработаны в современные «Рекомендации…» [11]. Строительство первого блока здания завершено в 1973 г. (это был первоначальный вариант аэровокзала и возводился он на камуфлетных сваях глубиной заложения 5-7 м). Практически сразу же у этого здания начал деформироваться правый торец стены (рис. 4). С тех пор данный участок сооружения находится в состоянии перманентного ремонта. Со слов участников строительства известно, что здесь до начала возведения надфундаментных конструкций была испытана статической нагрузкой одна из рабочих свай. Поскольку результаты ее испытания оказались отрицательными, то эта свая была откопана для освидетельствования грунтов основания и целостности ее конструкции. Установлено, что нижний конец сваи опирался на линзу ММП, а камуфлетное уширение по этой причине не образовалось. Сведений о принятии каких-либо мер по устранению выявленного дефекта не имелось. Рис. 4.Опасные повреждения торца пассажирского терминала Fig. 4. Dangerous damage to the end of the passenger terminal Второй блок, пристроенный к первому в качестве международного зала ожидания, возводился с 1981 по 1989 г. на буродобивных сваях глубиной заложения 9-11 м. Деформации в строительных конструкциях нового сооружения стали появляться еще до сдачи его в эксплуатацию, причины их возникновения приводятся ниже. В настоящее время оба блока здания во многих местах (снаружи и изнутри) (рис. 5, 6) покрыты характерными трещинами. Эти трещины (предположительно, вызванные производственным браком при устройстве свайных фундаментов, а также ухудшением несущих свойств грунтов основания в эксплуатационный период) возникали и развивались постепенно, иногда скачкообразно, все увеличиваясь в размерах. Возможно, что последнее связано с подземными толчками при местных микроземлетрясениях, которые регистрируются только в пределах локальных территорий высокочувствительными приборами [12]. Рис. 5. Опасные деформации эксплуатируемого здания без укрепления фундамента Fig. 5. The operated building continues to be dangerously deformed without strengthening the foundation Рис. 6. Продольные трещины в полу по всему зданию из-за просадки проблемных участков фундаментов Fig. 6. Longitudinal cracks in the floor throughout the building due to the subsidence of the problem areas of the foundations Сейчас особое внимание обращает на себя то, что примыкающая к аэровокзалу территория практически вся подвергнута процессам морозного пучения и просадке грунтов. Данное обстоятельство указывает на геокриологическое происхождение деформаций сооружения. При этом возникает вопрос о причинах длительности этих процессов, которые здесь не прекращаются в течение нескольких десятилетий. Требуют анализа инженерно-геологические данные об особенностях деформационно-прочностных свойств мерзлых, оттаивающих и талых грунтов, опыте проектирования, устройства и эксплуатации свайных фундаментов в таких геокриологических условиях. Дело в том, что недоизученность и недоучет этих факторов затрудняют надежную экспертную оценку дальнейшей эксплуатационной пригодности проблемных объектов строительства, которые еще не выработали свой нормативный срок службы, но под влиянием тех или иных причин находятся в потенциально аварийном состоянии. Необходимость мероприятий по обследованию конструкций пассажирских терминалов аэропорта «Сокол» рассмотрим на примере выполненных работ по геотехническому обследованию пристройки международного зала ожидания к существовавшему пассажирскому терминалу аэропорта [13]. Фундамент данной части здания возводился в котловане и состоял из кустов буродобивных свай (по 4 шт. в каждом) длиной 9-11 м (глубина скважин 7,5-8 м, забивка в несущий слой талых грунтов ниже забоя скважин - около 1,5 м). Расчетная нагрузка на каждую отдельную сваю составляла 450 кН. На площадке, грунты которой были представлены в основном талыми пылеватыми песками и дресвяно-щебенистыми супесями, производство работ нулевого цикла затянулось более чем на два года, а монтаж надфундаментной части осуществлялся с большими перерывами в течение восьми последующих лет. Контроль несущей способности рабочих свай осуществлялся только по результатам динамических испытаний, достоверность которых всегда значительно ниже, чем у свай, испытанных статическими нагрузками. При этом необходимо учесть, что в процессе неоправданно затянувшегося более чем на два года устройства фундамента подготовленный для него котлован неоднократно затапливался дождевыми водами. Переувлажненные грунты зимой промерзали и распучивались льдом. Судя по остаткам «перелетков», выявленных контрольным бурением в 1990 г., глубина промерзания грунтов достигала 5 м. Кстати, этим же бурением установлено, что кроме талых грунтов в основании этого фундамента залегали также и первоначально многолетнемерзлые породы, которые не были выявлены предпостроечными изысканиями. Геодезическая съемка вертикального положения низа колонн каркаса здания, выполненная в то время, показала, что за счет сил морозного пучения значительная часть незагруженных кустов свай приподнялась на 20-30 см (рис. 7). Негативное влияние этого фактора фиксировалась также и на обвязочном ростверке. Во многих местах он был покрыт характерными трещинами. Возведенное на таком фундаменте здание еще до ввода в эксплуатацию стало подвергаться неравномерным деформациям. Причина заключалась в просадке протаявших грунтов в основании фундаментных конструкций под совместным воздействием внешних нагрузок и возникших сил негативного трения на боковой поверхности свай, возвращавшихся к своему исходному положению, которое они имели до морозного выпора. Это подтверждено натурными испытаниями свай непосредственно в фундаменте существующего здания (рис. 8) [13]. Рис. 7. План фундамента и результаты геодезической съемки Fig. 7. Foundation plan and geodetic survey results Рис. 8. Результаты испытаний свай в фундаменте возведенного здания аэровокзала Fig. 8. Test results of piles in the foundation of the constructed air terminal building С учетом результатов этих испытаний предлагалось усилить ослабленные участки фундамента методом опережающего принудительного додавливания свай в несущий слой талого грунта гидродомкратами. Такой опыт в Магадане имелся [11]. Однако рекомендованные мероприятия (1991 г.), как и другие укрепительные меры [13], не проведены. Поэтому деформации надземных конструкций сооружения продолжаются до сих пор. Как уже отмечалось выше, подвергается деформациям и ранее построенная часть пассажирского терминала. Заключение Учитывая изложенные выше обоснования, а также уровень ответственности объекта строительства, отметим, что он согласно Федеральному закону РФ от 30.12.2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений» должен быть обследован на предмет причин деформаций, технического состояния несущих конструкций и возможности их дальнейшей эксплуатационной пригодности. В соответствии с имеющимся местным опытом обследования зданий в криолитозоне [3] и действующими в РФ нормативными документами по изысканиям, проектированию, строительству и эксплуатации (СП 11-105-97, СП 25.13330.2012, ГОСТ Р 53778-2010 и др.) предлагаемые работы должны включать в себя: 1) сбор, изучение и анализ инженерно-геологической, проектной и исполнительной документации, в том числе материалы обследований и акты скрытых строительных работ; 2) визуальное обследование технического состояния надземных конструкций деформирующегося здания; 3) геодезическую съемку объекта обследования и постановку его под постоянное инструментальное наблюдение за осадками основания и фундаментов, в том числе геофизическую - наблюдение за реакцией конструкций сооружения на сейсмические нагрузки; 4) проведение инженерно-геологических изысканий как для объекта на свайном основании с оттаявшими и талыми грунтами (находящегося в эксплуатации, но предназначенного к реконструкции): при изысканиях должно быть обращено дополнительное внимание на посткриогенные особенности физико-механических свойств грунтов; 5) экспериментальную оценку фактической несущей способности свай с наиболее характерными параметрами погружения путем их выборочных испытаний вдавливающими нагрузками в грунты основания (в местах наибольших деформаций строительных конструкций и при их отсутствии); 6) составление заключения о техническом состоянии основания, фундаментов и надземных частей объекта обследования с практическими рекомендациями. Необходимость выполнения такой работы обусловлена также и тем, что существующее здание аэровокзала предполагается перепроектировать в грузовой терминал, а для пассажиров аэропорта - построить на его территории новый терминал, но уже с учетом современных требований по безопасности, комфортности и дизайну. Полученные при обследовании новые экспериментальные данные позволят произвести более успешную реконструкцию старого здания, включая (при необходимости) укрепление подземной части и надфундаментных конструкций, а также найти рациональное решение при проектировании оснований и фундаментов нового пассажирского терминала в сложных инженерно-геокриологических условиях территории аэропорта «Сокол».Об авторах
В. П Власов
Северо-Восточный государственный университет; Институт мерзлотоведения СО РАН
А. В Болотин
Северо-Восточный государственный университет
С. М Сергеев
Северо-Восточный государственный университет
А. А Лунегова
Северо-Восточный государственный университет
Список литературы
- Yakutia.ru. График температуры грунта за 2018-2019 год. Магаданская обл. [Электронный ресурс]. - URL: https://atlas-yakutia.ru/weather /2017/temp/magadan_t_grunt_2017.php (дата обращения: 3.09.2018).
- О сейсмической опасности Магаданской области / С.Б. Малиновский, В.М. Шарафутдинов, С.В. Мишин, Л.В. Шарафутдинова // Колыма. - 2005. - № 1. - С. 27-32.
- Власов В.П. Проблемы надежности оснований и фундаментов в Магаданской области // Основания, фундаменты и механика грунтов. - 2004. - № 2. - С. 24-29.
- Власов В.П., Присяжной В.Б. Геокриологические проблемы эксплуатационной надежности пассажирского терминала в аэропорту «Магадан» // Геотехника в криолитозоне: материалы 5-й конф. геокриологов России / МГУ им. М.В. Ломоносова, 14-17 июня 2016 г. Т. 1. Ч. 1-4. - М.: Университетская книга, 2016. - С. 66-70.
- Geokniga.org. Государственная геологическая карта Российской Федерации [Электронный ресурс]. - URL: http://www.geokniga.org/sites/geokniga/files/mapcomments/p-56-xxxi-palatka-gosudarstvennaya-geologicheskaya-karta-rossiyskoy-federacii-.pdf (дата обращения: 3.09.2018).
- Architect.49gov.ru. Обновление схемы территориального планирования Магаданской области. Т. 1. Современное состояние и потенциал развития Магаданской области [Электронный ресурс]. - URL: https://architect.49gov.ru/common/upload/file/tom_1_.pdf (дата обращения: 3.09.2018).
- Материалы инженерно-геологических изысканий на объекте «Вторая очередь аэровокзала в аэропорту г. Магадана / МагаданпромстройНИИпроект. - Магадан, 1991.
- Cyberleninka.ru Гидрогеологические трансформации при строительстве и эксплуатации аэропорта «Магадан» на Северо-Востоке России [Электронный ресурс]. - URL: https://cyberleninka.ru/article/n/gidrogeologicheskie-transformatsii-pri-stroitelstve-i-ekspluatatsii-aeroporta-magadan-na-severo-vostoke-rossii (дата обращения: 3.09.2018).
- Конаш В.Е. Свайные фундаменты в условиях островного распространения вечномерзлых грунтов (на примере Магадана). - Л.: Стройиздат, 1977. - 100 с.
- Власов В.П. Особенности свайного фундаментостроения в талых и оттаивающих грунтах Магаданской области. - Якутск: Изд-во ИМЗ СО РАН, 1992. - 176 с.
- Рекомендации по проектированию и устройству свайных фундаментов зданий и сооружений на оттаивающих и талых грунтах Магаданской области / авт.-сост. В.П. Власов, С.А. Гулый, Р.В. Чжан; отв. ред. Г.П. Кузьмин. - Якутск: Изд-во ВГБУН «Институт мерзлотоведения им. П.И. Мельникова СО РАН», 2012. - 64 с.
- Studwood.ru. Микроземлетрясения [Электронный ресурс]. - URL: https://studwood.ru/ 1243003/geografiya/mikrozemletryaseniya (дата обращения: 3.09.2018).
- Комплексное обследование в стадии незавершенного строительства деформирующегося здания аэровокзала а/п Магадан с выявлением причин деформаций и разработкой предложений по его усилению: техн. отчет / МагаданпромстройНИИпроект - МНИиПП «СтройНИП». - Магадан, 1991.
- Wikiredia.ru. Сокол (аэропорт) [Электронный ресурс]. - URL: http://wikiredia.ru/wiki/%D0%A1%D0%BE%D0%BA%D0%BE%D0%BB_(%D0%B0%D1%8D%D1%80%D0%BE%D0%BF%D0%BE%D1%80%D1%82) (дата обращения: 3.09.2018).
- Dic.academic.ru. Аэропорт «Магадан» (Сокол) [Электронный ресурс]. - URL: https:// dic.academic.ru/dic.nsf/ruwiki/617450 (дата обращения: 3.09.2018).
Статистика
Просмотры
Аннотация - 835
PDF (Russian) - 291
Ссылки
- Ссылки не определены.