Vol 22, No 3 (2018)

Articles
Biomechanical modelling of trabecular bone tissue IN REMODELLING equilibrium
Chikova T.N., Kichenko A.A., Tverier V.M., Nyashin Y.I.

Abstract

In the 19th century, J. Wolff noted that the bone of a healthy person or animal adapts to the loads under which it is placed. At the tissue level, weakly porous regions of compact tissue and strongly porous regions of the cancellous (spongy) tissue are seen in the bone. It is known that in the cancellous bone tissue the adaptation mechanism is realized by aligning the trabeculae (bone bunches forming a solid matrix) along the principal stress trajectories. When the cancellous tissue reaches the optimal structure for the existing loading in the local area, the bone passes into a state of equilibrium (homeostasis). In his works, S. Cowin proposed to describe the position of the trabeculae at each discrete instant of time by the principal trajectories of the fabric tensor calculated from the solution of the system of rate equations. On the basis of the proposed relationships, many problems of the dynamics of cancellous bone tissue are solved, the results of which are functions of a certain quantity that depends on time. For example, the change in porosity, the components of the deviator of the fabric tensor. In this work, rate equations are used to determine the structure, stress state or elastic properties of a bone sample in equilibrium. The mathematical statement is presented by the anisotropic elasticity problem. All numerical calculations were performed using the ANSYS Mechanical APDL software on example of a rectangular plate tension. The results of the problem obtained by the analytical approach and the finite element method are compared. It is assumed that the obtained relationships can be useful for predicting of the stress-strain state in the bone of known structure, or vice versa, to predict the optimal bone structure for the given loading conditions.
Russian Journal of Biomechanics. 2018;22(3):282-291
views
MODELLING OF CANCELLOUS BONE TISSUE ADAPTATION IN RAMUS OF THE HUMAN MANDIBLE
Chikova T.N., Kichenko A.A., Tverier V.M., Nyashin Y.I.

Abstract

The structure of the cancellous bone tissue in different parts of the skeleton is not the same and tends to become optimal for bone-affecting load, remodelling itself through the mechanisms of bone formation and resorption. Jaw is the one of the most liable bone to change its structure. In addition to the normal changes associated with the replacement of primary teeth by permanent ones, we often have to deal with pathological changes in the internal architecture of the bone caused by underloading of certain areas of bone tissue due to tooth loss, jaw injuries, and malocclusion. Among the pathologies of the dentoalveolar system, for example, Popov - Godon phenomenon takes place, expressed in abnormal dental shifts, provoked by the antagonists loss or adjacent tooth and accompanied by adaptation of surrounding bone tissues. Assuming that the mechanical load is the factor that leads to the adaptation process in the bone, the paper considers a numerical algorithm that simulates the reconstruction of the cancellous bone at the mesolevel through rate equations including the deviator of the fabric tensor. The results are given for the geometry of the lower jaw, for simplicity consisting entirely of cancellous bone tissue and loaded with efforts from the chewing muscles and the reaction of the temporomandibular joint. As a critical load, single force is applied to the molar of the lower jaw. The purpose of the numerical analysis is to obtain a pattern of stress intensity distribution and porosity in ramus of the mandible at each discrete stage of evolution under load and compare the results with previously published data of other authors.
Russian Journal of Biomechanics. 2018;22(3):292-300
views
MODELLING DUSTY AIR FLOW IN THE HUMAN RESPERATORY TRACT
Trusov P.V., Zaitseva N.V., Tsinker M.Y., Babuskina A.V.

Abstract

The paper focuses on studying non-stationary flow and deposit of dusty air (multiphase mixture of gases and solid particles) in the large lower airways within the frameworks of developing a mathematical model for the human respiratory system. The authors examine weighted particulates of aluminum oxide (with diameter of particles less than 10 µm) content in inhaled air, at "maximum permissible average daily concentrations" level. The carrier phase is described with a viscous liquid model; solid particles are individual particles with different sizes with specific equations given for them; solid particles are thought to be spherical. Flow parameters are calculated with ANSYS CFX software package. We obtain parameters for flow of gas mixture with solid particles; the paper contains velocities fields and tracks of solid particles with different sizes during an inhalation at various time moments. Results obtained due to a submodel describing air movement in the human large lower airways are initial data for modeling gas suspension flow in the human lungs. Besides, the obtained results can be applied to solve tasks on assessing human health risks caused by impacts exerted by weighted particulates deposited in the human lower airways. Further model development should involve combined solution to issues of gas dynamics in the human airways and air filtration in the elastostrained saturated porous medium of the human lungs.
Russian Journal of Biomechanics. 2018;22(3):301-314
views
MODELLING OF DYNAMIC BEHAVIOUR OF DENTAL BRIDGE USING FINITE ELEMENT METHOD
Krupnin A.E., Kharakh Y.N., Kirakosyan L.G., Arutyunov S.D.

Abstract

The goal of research is application of dynamic analysis methods in dentofacial biomechanics using polymethylmethacrylate dental bridge as a pilot example. Plane strain formulation is used. Experimental verification is carried out based on results of ceramic dental bridge with identical design. Natural frequencies and Rayleigh damping ratios are determined. Influence of force duration on stresses occurring in dental bridge is investigated. Local areas of maximal equivalent stresses are determined using von Mises criterion. Moreover, the study shows high increase in deformation and stresses (excessing the yield stress) in the case when force duration equal or close to natural period. The results of dynamic analysis tend to results of static analysis in the case of force duration increase. The influence of pulp can be neglected during solving static analysis problems. But, the research approved pulp’s role as a natural shock absorber in the dentofacial system. As a result, consideration of pulp leads to decrease of deformation, stresses, intense energy absorption and oscillation damping.
Russian Journal of Biomechanics. 2018;22(3):315-331
views
BUILDING THE INHOMOGENEOUS FINITE ELEMENT MODEL BY THE DATA OF COMPUTED TOMOGRAPHY
Sachenkov O.A., Gerasimov O.V., Koroleva E.V., Mukhin D.A., Yaikova V.V., Akhtyamov I.F., Shakirova F.V., Korobeynikova D.A., Khan H.C.

Abstract

The aim of the work is to reveal a methodology for constructing a finite element model by tomography data. To evaluate the model, calculations of the femur were carried out. The relevance of this study is confirmed by the effect of the distribution of the mechanical properties of the bone on stress-strain state and the need for individualizing the approach to modeling. Numerical studies were performed using the finite element method in the Ansys software, computer tomography data processing was carried out in the Avizo software. The problem of a linear inhomogeneous elastic body was considered. Power functions of the optical density were used to determine the Young's modulus and the limiting voltage, in turn, the optical density was determined from linear relations depending on the Hounsfield numbers. For finite element model, the mechanical properties of the material were distributed for each element according to the tomography data. After solving the problem of the stress-strain state, at each node a factor of safety was determined adjusted for the properties of the material from the tomography data. Inhomogeneous and homogeneous models with average properties were built. Calculations for both models were performed. Numerical results clearly illustrate significant differences in the results of the stress-strain state of the inhomogeneous and homogeneous models of the organ. Inhomogeneous model allows us to evaluate the local strength of bone tissue taking into account individual characteristics.
Russian Journal of Biomechanics. 2018;22(3):332-344
views
BLOOD FLOW IN BRANCHED VESSELS WITH ANEURYSM
Tazyukov F.K., Kutuzova E.R., Snigerev B.A., Garifullin F.A.

Abstract

This paper is devoted to theblood flow symmetryloss study in the branching vessels with the aneurysm. Aneurysm appearance is possible in the damaged blood vessels localized in different parts of the circulatory system with different types of flow (convergent and divergent). Aneurysms of aorta, peripheral vessels, heart, and brain can be distinguished. Regardless of the localization, the disease leads to serious consequences and requires surgical intervention. This paper presents mathematical modelling of blood flow in vessels with small diameter, which is characterized by small values of Reynolds number and rigidity. This representation corresponds to the cerebral vessels. The blood flow simulation is performed using rheological viscoelastic fluid model (FENE-P). This model predicts the blood flow properties corresponding to the real biological fluid, namely, the viscosity anomaly, variable longitudinal viscosity, and the finite time of stress relaxation. The governing parameters of the flows of such fluids is the Weissenberg number (We) characterizing the ratio of elastic properties of biological liquid to viscous ones, the Reynolds number (Re) describing the ratio of inertial to viscous properties, the ability of macromolecules of proteins included in blood change their orientation in the flow, the degree of disentanglement of macromolecules of protein L2 and retardation coefficient β characterizing the concentration of macromolecules in the blood. In this paper, the possibility of blood flow symmetry loss in bifurcation areas of the circulatory system at certain values of the parameters of the mathematical model for converging flow is discussed. The effect of the shape of aneurysm occurrence on the blood flow pattern is performed. Results comparison for blood flow in the channel with two types of cavities is performed.
Russian Journal of Biomechanics. 2018;22(3):345-360
views
EFFECT OF THREAD CHARACTERISTICS ON PRIMARY STABILITY OF DENTAL IMPLANTS
Dashevskiy I.N., Shushpannikov P.S.

Abstract

One of the key factors in the success of dental implantation is osseointegration - fusion of the implant with the bone. Excessive micromobility on the implant-bone surface under loading disrupts osseointegration. A natural question arises: is it possible to minimize micromobility by controlling the structural characteristics of the implant, in particular, the threads? The influence of the thread characteristics (profile, depth and thread pitch) on the stability of dental implants under immediate loading (primary stability) is studied in the paper, when osseointegration has not yet occurred and there is no complete adhesion at the implant-bone interface. The change in the thread profile is modeled by a variation in the angle of inclination of the sides of the profile with a gradual transition from the triangular through the trapezoidal and square threads to the dovetail one. The minima of the maximum displacements on the implant-bone interface are obtained for the square and dovetail profiles. Their values are microns, which corresponds to the data of other papers. The influence of the depth and pitch of the thread is studied on a square profile. It has been established that an increase in the thread depth from 0.1 to 0.4 mm (as well as a reduction in the thread pitch from 2 to 0.4 mm) led to a 3-6% decrease in the implant subsidence (global mobility) and to a significant (multiple) monotonic drop in movement at the interface. Thus, the profile of the thread has a significant effect on the micromobility on the implant-bone surface under loading: with the same values of the occlusal load and observed tooth macromomobility, it can change micromobility by times. The micromotion minima are obtained for the square and dovetail profiles. The maxima of local displacements arise on the apex turn of the thread.
Russian Journal of Biomechanics. 2018;22(3):361-377
views
INFLUENCE OF THE DEFORMATION ON THE propagation OF WAVES OF EXCITATION IN THE HEART tissue
Vasserman I.N., Shardakov I.N., Shestakov A.P.

Abstract

A model is constructed for changing the intracellular conductivity of the myocardium with its deformation on the basis of an analysis of the microstructural model of P.E. Hand, B.E. Griffith, C.S. Peski (Bull Math. Boil (2009)) model. The cardiac tissue was considered as a periodic lattice, where the cells are rectangular prisms filled with isotropic electrolyte, and the conductivity of the gap junctions is taken into account through the boundary conditions on the sides of these prisms and is assumed to be constant. Using the homogenization method in the form proposed in the paper G. Richardson and S.J. Chapman (SIAM Journal Appl. Math (2011)), the conductivity values are analytically expressed in terms of cell sizes, lattice periodicity parameters, electrical properties of myoplasm and gap junctions. On the basis of these relationships, the dependence of the tissue conductivity on its deformation is determined. A comparison is made with the model proposed in the book F.B. Sachse. Computational Cardiology (Springer (2004)). It is shown that both models can be well matched for elongations in the range from 0.8 to 1.2. A numerical algorithm based on the splitting method and its software implementation based on the finite element library FEniCS are developed. Conductivities calculated for different deformation dependences are compared. Corresponding profiles of the excitation waves in a rectangular two-dimensional region are considered. The effect of deformation is strongly "diluted" by extracellular conductivity. The appearance of depolarization and hyperpolarization regions (virtual electrodes) is also considered when an electric current is applied to the myocardium in a small domain. In this case, the effect of deformation is more significant.
Russian Journal of Biomechanics. 2018;22(3):378-389
views
MECHANICAL STABILITY OF FIXATION OF ANTERIOR CRUCIAL LIGAMENT IMPLANTS
Bogatov V.B., Lychagin A.V., Drogin A.R., Chekulaev E.A.

Abstract

Anterior crucial ligament tears are the most widespread lesions among isolated trauma of knee ligaments that require early surgical treatment especially in young active patients. There are various anterior crucial ligament reconstruction techniques where femur and tibia tunnels are formed and graft is fixed by cannulated interference screws. Especial interest presents operations when synthetic prosthesis made of polyethyltetraftalate are used as implants. Purpose of the study was to test the rigidity of fixation of the anterior crucial ligament implants with various types of fixation by interference screws. Experimental models “bone - implant” had shown that artificial ligaments provide enough stability of the knee joint, that allow early rehabilitation. The most stable system was when the implant fixed by four interference screws. When the implant was fixed by two interference screws it can slide in tibial channel. That may cause the possibility of knee instability during early rehabilitation.
Russian Journal of Biomechanics. 2018;22(3):390-397
views
The kinematic analysis of degree of the lumbar spine curvature of pregnant women in different stages of pregnancy
Atiyat K., Abdul Fattah O., Zureigat A., Dawad H.

Abstract

The purpose of this study is to identify the degree of the lumbar spine curvature of pregnant women in the different trimesters of pregnancy. In addition, we can identify the levels of low back pain in various stages of pregnancy and manifestations of imbalance on some kinematic variables in the walking cycle. In order to achieve the goals of this study, the descriptive approach has been applied to 24 healthy patients. The researchers used two rulers to measure the degree of the lumbar spine curvature, and a questionnaire to quantify the level of low back pain and imbalance disruption. Also, the researchers used two cameras to filmed patients while walking on the treadmill: one camera was put laterally (60 f/sec) and the other was put on the front (50 f/sec). Furthermore, the results of the study showed that the degree of the lumbar backbone curvature, the low back pain and imbalance increase in the transition to the next trimester of pregnancy. The results also showed decrease of length and speed of the walking step, increasing the time of dual and individual reinforcement.
Russian Journal of Biomechanics. 2018;22(3):398-406
views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies