Особенности оценки просадочных свойств лессовых пород при проектировании оснований и фундаментов в Центральной Молдавии

Аннотация


Изучалась просадочность субаэральных покровных глинистых отложений, распространенных в периферийной части Центрально-Молдавской возвышенности на территории Северного Причерноморья. Анализировались данные о величине относительной просадочности и начальном просадочном давлении, полученные различными лабораторными и полевыми методами исследования. Предложены регрессионные уравнения и корректировочные коэффициенты взаимосвязи результатов лабораторных и полевых методов оценки просадочности.

Полный текст

Введение Лессовые просадочные грунты широко распространены в Центральной Молдавии, где расположены такие крупные города, как Кишинев, Тирасполь, Бендеры и др. Здания и сооружения здесь очень часто возводятся на лессовых основаниях. В целом строительство на таких грунтах небольшой мощности уже не представляет серьезной проблемы. Однако при больших мощностях просадочной толщи и возможной просадке от собственного веса грунта более 10,0-20,0 см здания часто претерпевают деформации, что требует дополнительных материальных затрат на их реконструкцию. В связи с этим цель настоящей работы заключается в анализе различных методов оценки просадочности лессовых пород, осуществляемой на стадии инженерно-геологических изысканий и выработки рекомендаций для проектировщиков и изыскателей. Научный материал, положенный в основу настоящей статьи, представляет собой результаты инженерно-геологических изысканий, выполненных на объектах строительства, и специальных научных исследований, осуществленных под руководством Ю.И. Олянского в различных производственных и научных организациях г. Кишинева в разные годы. Геоморфологическая область Центральной Молдавии представляет собой эрозионную возвышенность высотой около 420 м над уровнем моря, испытавшей положительные неотектонические движения на протяжении всего четвертичного периода. В результате этого на поверхности обнажаются неогеновые сармат-меотические породы, представленные глинами с прослоями мелкого и пылеватого песка. Вследствие эрозионных процессов на протяжении всего четвертичного периода происходили денудация и снос мелкозема в периферийные части возвышенности, где в результате субаэрального процесса происходили накопление осадка и преобразование его в глинистые породы. Особенностью этих отложений является невысокое содержание пылеватой фракции (17,0-30,0 % по гранулометрическому и 22,0-37,0 % по микроагрегатному составам) и высокое содержание глинистых (10,0-20,0 %) и песчаных (14,0-50,0 %) частиц. Такие грунты в соответствии с ГОСТ 25100-95 принято именовать лессовыми. Представлены они супесями, легкими и средними суглинками. Минеральный состав дисперсной фракции включает в основном гидрослюдисто-монтморионитовые минералы при некотором преобладании последних [1]. Особенности генезиса и механического состава проявились в физических свойствах отложений: невысокой общей пористости (в среднем около 0,43 %) и высокой плотности сухого грунта (в среднем 1,50-1,60 г/см³). Влажность пород при этом остается достаточно небольшой и редко превышает значение 0,16-0,17, что является следствием хорошей природной дренированности лессовых толщ и приуроченности региона к области недостаточного увлажнения с коэффициентом увлажнения Кув = 0,80 [2]. 1. Методика выполнения работ Исследования выполнялись на территории г. Кишинева, характеризующейся почти повсеместным распространением лессовых пород. Были выбраны два участка: первый - район Буюкань, второй - район Будешть. Мощность лессовых пород на первом участке достигает 16,0-18,0 м, на втором - 30,0-35,0 м. На каждом из участков выполнен комплекс полевых работ, состоящий из проходки буровых скважин и дудок, в которых отбирались образцы лессовых пород ненарушенного сложения. Выполнялись исследования по изучению просадочности в основании стандартного штампа. Было произведено замачивание опытных котлованов по стандартной и ускоренной методикам. Лабораторные исследования просадочности грунтов. Компрессионные испытания выполнялись в соответствии с ГОСТ 23161-78[7]. Одновременно испытывались два образца - природной влажности и водонасыщенный. При достижении нагрузки 0,3 МПа сухая ветвь замачивалась, и фиксировалась деформация просадки. Такая методика испытаний позволяет получить характеристики просадочности (относительную просадочность) по схеме «двух кривых» и «одной кривой». Полевые штамповые испытания. Испытания просадочных пород статическими нагрузками с замачиванием в полевых условиях осуществлялись стандартным круглым штампом площадью 5000 см², который устанавливался в дудке диаметром 900 мм, глубиной 4,0-6,0 м. Замачивание пород в основании штампа осуществлялось через дно дудки и дренажные скважины, пройденные вокруг штампа на расстоянии 0,5 м от последнего. Глубина дренажных скважин на 1,5 м превышала глубину установки штампа. Испытания выполнялись по упрощенному методу и методу «двух кривых». Первый метод заключался в обжатии пород природной влажности ступенями нагрузок 0,025 МПа до нагрузки 0,25 МПа. После условной стабилизации производили замачивание пород и дальнейшее их обжатие до нагрузки 0,30-0,40 МПа. Испытания по методу «двух кривых» проводились параллельно в двух дудках на расстоянии 4,0-5,0 м одна от другой. Штампы устанавливались на одинаковой глубине. Один испытывал грунты природной влажности, другой - водонасыщенные. За начальное просадочное давление принималась нагрузка условного предела пропорциональности, при неявно выраженном пределе - нагрузка, при которой просадочная деформация в основании штампа превышала значение 0,005hg, где hg - величина активной зоны штампа[8]. Замачивание опытных котлованов. Определение просадки лессовой толщи от собственного веса грунта является важнейшей задачей инженерно-геологических изысканий для строительства[9] [3], которая может быть решена и в большинстве случаев решается с использованием результатов компрессионных испытаний. Однако наиболее надежным методом определения возможной просадки толщи является метод опытных замачиваний в полевых условиях. Выполнены замачивания двух котлованов по методике, изложенной в СНиП 2.02.01-83 [4]. Для оценки просадки поверхности дна котлована были установлены поверхностные марки, а для оценки просадки толщи по глубине - глубинные реперы по два на каждую литологическую разновидность лессовых толщ. Параллельно с замачиванием опытных котлованов по стандартной методике были выполнены замачивания двух опытных котлованов площадью 5 м² по ускоренной методике [5, 6]. 2. Результаты исследования и их обсуждение Оценивалось сходство результатов определения просадочности образцов лессовых пород в компрессионном приборе по схемам «двух кривых» и «одной кривой». Для этого был использован корректировочный коэффициент К, равный соотношению , где - величина относительной просадочности образца при нагрузке 0,3 МПа, определенная по схеме «двух кривых»; - величина относительной просадочности образца при нагрузке 0,3 МПа, определенная по схеме «одной кривой». В табл. 1 дано распределение корректировочного коэффициента К в зависимости от типа лессовых пород и интервалов его значений. Таблица 1 Логнормальное распределение значений коэффициента К, % Table 1 The lognormal distribution of values of the coefficient К, % Типы лессовых пород Количество определений Интервалы значений коэффициента К До 1,0 1,0-1,5 1,5-2,0 2,0-2,5 2,5-3,0 Более 3,0 Супеси и легкие суглинки 143 17,2 52,5 16,5 4,3 2,8 6,7 Средние суглинки 92 20,1 53,2 11,2 4,7 3,6 7,1 Статистические характеристики корректировочного коэффициента К приведены в табл. 2. Анализ данных табл. 1 и 2 показывает, что для субаэральных отложений Центральной Молдавии характерно завышение значений величины относительной просадочности, полученной испытанием в компрессионных приборах по схеме «двух кривых», над значениями этой же величины, определенной по схеме «одной кривой», в среднем на 10-20 %. Как свидетельствуют исследования ряда авторов [7-9], эти методы испытаний практически никогда не дают одинаковых результатов. «…Иногда эти различия… зависят от неоднородности грунтов в монолите… В других случаях можно предположить влияние предварительного набухания глинистых минералов при замачивании образцов без пригрузки, влияние более длительного увлажнения грунта или другие причины…» [9, с. 20]. Результаты замачивания лессовых пород в основании штампа приведены в табл. 3. Таблица 2 Характеристики коэффициента К Table 2 Features of the K coefficient Типы лессовых пород Статистические характеристики Среднее Пределы колебания Стандартное отклонение Количество определений Супеси и легкие суглинки 1,11 0,71-2,33 0,54 143 Средние суглинки 1,20 0,58-2,02 0,63 92 Таблица 3 Результаты штамповых испытаний лессовых пород Table 3 The results of stamping tests of loess rocks Типы лессовых пород Осадка штампа до замачивания, мм Осадка штампа в процессе замачивания, мм Начальное просадочное давление, МПа Количество опытов Супесь 7,2 14,2 0,08 7 Легкий суглинок 7,0 12,2 0,16 4 Средний суглинок 4,9 2,9 0,16 4 Тяжелый суглинок 9,3 4,7 0,29 6 В табл. 4 приведены значения величины начального просадочного давления, рассчитанные по компрессионным испытаниям и статическим нагрузкам на штамп. Таблица 4 Значения начального просадочного давления лессовых пород, определенного различными методами Table 4 The initial subsidence pressure of loess rocks, certain various other methods Типы лессовых пород Физические характеристики Начальное просадочное давление, МПа Корректировочный коэффициент W Jp n, % Супеси и легкие суглинки 0,11 0,08 45,6 0,87 Средние и тяжелые суглинки 0,15 0,12 46,5 0,73 Примечание: , - по результатам компрессионных и штамповых испытаний соответственно; в числителе - среднее, в знаменателе - количество определений и стандартное отклонение. Анализ данных табл. 3 и 4 позволяет сделать следующие выводы. Начальное просадочное давление изученных лессовых пород увеличивается с повышением их глинистости от супесей до тяжелых суглинков примерно в 3 раза. Начальное просадочное давление по штамповым испытаниям для всех литологических типов лессовых пород региона превышает значения, полученные по компрессионным испытаниям, в среднем на 12-27 %. Соотношение между величинами относительной просадочности пород, определенной методом статических нагрузок на штамп и полученной в лабораторных условиях при нагрузке 0,25 МПа, изучено для двух типов отложений: а) супеси и легкие суглинки: ; б) средние суглинки: В табл. 5 дана сравнительная оценка величины относительной просадочности, определенной различными полевыми и лабораторными методами. Таблица 5 Сравнительная характеристика величины по данным различных методов исследований Table 5 Comparative characteristic values according to various research methods Метод определения показателя 1-й участок (мкр. Боюкань) 2-й участок (мкр. Будешть) Супеси и легкие суглинки Средние и тяжелые суглинки Компрессионные испытания по схеме «двух кривых» 0,015 0,011 Компрессионные испытания по схеме «одной кривой» 0,012 0,005 Нагрузка на стандартный штамп площадью 5000 см² 0,007 0,004 Замачивание котлована по стандартной методике 0,002 0 Замачивание котлована по ускоренной методике 0,003 0,004 Анализ данных табл. 5 позволяет сделать вывод о том, что для грунтовых условий г. Кишинева результаты полевых методов определения величины относительной просадочности лучше всего сходятся с результатами компрессионных испытаний методом «одной кривой», что не противоречит выводам других исследователей для аналогичных лессовых пород [10-12]. Выводы Субаэральные покровные отложения, распространенные в периферийной части Центрально-Молдавской возвышенности, обладают признаками лессовидности: желтый, палево-желтый цвет и макропористость. Однако их механический состав существенно отличается от истинно пылеватых лессов. Содержание пылеватых частиц у них крайне невелико и редко достигает значение 50 %. Содержание песчаных и глинистых частиц также весьма не свойственно истинным лессам. Высокое содержание (до 60 %) в дисперсной фракции сильнонабухающего монтмориллонита тоже не свидетельствует в пользу истиной лессовидности, а является следствием субаэрального генезиса (делювиального, пролювиального и др.). Тем не менее данные породы в соответствии с ГОСТ 25100-95 можно именовать лессовыми, поскольку они обладают просадочными свойствами при увлажнении вследствие искусственного замачивания. Знания особенностей проявления просадочности этих отложений, охарактеризованные в настоящей статье, будут полезны изыскателям и проектировщикам, занимающимся проектированием и строительством на аналогичных породах в инженерно-геологических условиях Северного Причерноморья и других регионах юга Русской платформы.

Об авторах

А. Н Богомолов

Волгоградский государственный архитектурно-строительный университет

Ю. И Олянский

Волгоградский государственный архитектурно-строительный университет

Е. В Щекочихина

Волгоградский государственный архитектурно-строительный университет

И. Ю Кузьменко

Волгоградский государственный архитектурно-строительный университет

С. А Чарыкова

Волгоградский государственный архитектурно-строительный университет

Список литературы

  1. Олянский Ю.И. Лессовые грунты юго-западного Причерноморья (в пределах Республики Молдова). - Кишинев: Штиница, 1992. - 129 с.
  2. Олянский Ю.И., Богдевич О.П., Вовк В.М. Инженерно-геологические особенности лессовых пород Молдовы // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. - 1994. - № 1. - С. 65-75.
  3. Задачи инженерно-геологических изысканий при проектировании оснований и фундаментов на просадочных грунтах / Ю.И. Олянский, С.И. Махова, Т.М. Тихонова, О.В. Киселева // Надежность и долговечность строительных материалов, конструкций и оснований фундаментов: материалы VI Междунар. науч.-техн. конф. - Волгоград, 2011. - С. 245-248.
  4. Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83). - М.: Стройиздат, 1986. - 416 с.
  5. Крутов В.И., Попсуенко Н.К. Ускоренный метод определения просадочности лессовых грунтов замачиванием котлованов небольшой площади // Инженерная геология. - 1981. - № 3. - С. 108-116.
  6. Оценка просадочности лессовых оснований полевыми и лабораторными методами / А.Н. Богомолов, Г.М. Скибин, Ю.И. Олянский, С.И. Махова, А.Ф. Алексеев, Б.Ф. Галай // Вестник Волгоград. гос. арх.-строит. ун-та. Строительство и архитектура. - 2015. - Вып. 40 (59). - С. 98-115.
  7. Ананьев В.П. Минералогический состав и свойства лессовых пород. - Ростов н/Д: Изд-во Ростов. гос. ун-та, 1964. - 143 с.
  8. Садэтова Э.М. Сопоставление методов оценки просадочности лессовых пород // Вопросы исследования лессовых грунтов, оснований и фундаментов. - Ростов н/Д: Изд-во Ростов. гос. ун-та, 1970. - Вып. 2. - С. 90-98.
  9. Кригер Н.И. Состояние вопроса об оценке просадочных свойств лессовых грунтов (обзор). - М.: ПНИИИС, 1972. - 60 с.
  10. Богомолов А.Н., Олянский Ю.И. Инженерно-геологические аспекты взаимодействия глинистых пород с водой (на примере сарматских глин и лессовых пород). - Волгоград: Изд-во Волгоград. гос. арх.-строит. ун-та, 2016. - 351 с.
  11. Инженерно-геологическая характеристика лессовых пород междуречья Прут - Днестр / А.Н. Богомолов, Ю.И. Олянский, С.И. Шиян, Т.М. Тихонова, О.В. Киселева // Вестник Волгоград. гос. арх.-строит. ун-та. Строительство и архитектура. - 2011. - Вып. 24 (43). - С. 33-45.
  12. Изменение состава и свойств лессовых пород при техногенном обводнении / А.Н. Богомолов, Ю.И. Олянский, Е.В. Щекочихина, Т.М. Тихонова, И.Ю. Кузьменко. - Волгоград: Изд-во Волгоград. гос. арх.-строит. ун-та, 2015. - 204 с.

Статистика

Просмотры

Аннотация - 134

Ссылки

  • Ссылки не определены.

© Богомолов А.Н., Олянский Ю.И., Щекочихина Е.В., Кузьменко И.Ю., Чарыкова С.А., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах