Том 9, № 2 (2018)

О НАПРЯЖЕННО-ДЕФОРМИРОВАННОМ СОСТОЯНИИ УПРУГОЙ ПОЛУПЛОСКОСТИ ПРИ АСИМПТОТИЧЕСКОМ ЗАТУХАНИИ ПЕРЕМЕЩЕНИЙ НА БЕСКОНЕЧНОСТИ
Богомолов А.Н., Богомолова О.А., Ушаков А.Н.

Аннотация

Известно, что в результате устройства подземных выработок на земной поверхности образуется чашеобразная впадина, вызванная перемещением грунта в выработанное пространство. Поперечное сечение этой впадины, проведенное в нормальном по отношению к простиранию выработки направлении, имеет седлообразную форму. Данное обстоятельство подтверждается многочисленными результатами теоретических исследований и натурных наблюдений. В статье приведено аналитическое решение задачи о распределении напряжений в однородном изотропном грунтовом массиве при асимптотически затухающем перемещении на участке его границы. Полученное решение может быть использовано для определения напряжений, возникающих в грунтовом массиве за счет его подработки подземными выработками. Для построения аналитического решения использованы методы теории функций комплексного переменного (методы Колосова - Мусхелишвили). Выражения для компонент напряжения и деформации, зависящие от коэффициента Пуассона, определены на основе решения второй основной граничной задачи плоской теории упругости для полуплоскости, что является очень важным ввиду достаточно большого отличия численных значений этой характеристики для различных видов скальных грунтов. Приведены графические изображения изолиний напряжений. Для построения картин изолиний напряжений использована математическая оболочка Maple. Частными случаями приведенных решений являются решения задач о напряженно-деформированном состоянии упругой полуплоскости при равномерном и линейном перемещениях участка границы полуплоскости. Суммированием приведенных в статье компонент напряжения и деформации можно получить решение аналогичной задачи при асимптотическом стремлении перемещения к некоторому постоянному значению (равномерному перемещению).
Construction and Geotechnics. 2018;9(2):5-19
views
СНИЖЕНИЕ ТРУДОЕМКОСТИ ИЗЫСКАТЕЛЬСКИХ РАБОТ ЗА СЧЕТ ПРИМЕНЕНИЯ DP-МЕТОДОВ ОТБОРА ПРОБ ГРУНТОВЫХ ВОД
Семёнов А.В., Офрихтер В.Г.

Аннотация

Главным этапом любых инженерных изысканий является проведение полевых работ, именно на этом этапе производится отбор проб, описывается и измеряется уровень грунтовых вод. Для изучения грунтовой толщи в Российской Федерации традиционно применяется бурение скважин. Для определенных целей в соответствующих грунтах применяется статическое зондирование, которое относится к технологиям так называемого прямого вдавливания (Direct Push - далее DP). Применение адаптированных пробоотборников позволяет параллельно со статическим зондированием отбирать пробы грунтов ненарушенной структуры. Также существует несколько технологий отбора проб грунтовых вод, совместимых со статическим зондированием. Эти технологии позволяют, при использовании определенных устройств, совместно со статическим зондированием отбирать пробы грунтовых вод, почвенного воздуха (паров) и проб грунта, обнаруживать летучие органические соединения, измерять поровое давление и уровень грунтовых вод и организовывать мониторинг колебаний уровня грунтовых вод. Использование этих подходов позволяет изучить грунтовую толщу и отобрать пробы грунтов ненарушенной структуры и грунтовых вод без бурения скважин. В связи с отсутствием необходимости выполнять работы по бурению скважин в грунтовом массиве значительно сокращаются стоимость и трудозатраты полевых работ. Оборудование для отбора проб по технологии DP делится на две группы: оборудование, работающее в заданный момент времени (Point-in-Time - далее PT), и оборудование для осуществления контроля за уровнем грунтовых вод при помощи мониторинговых скважин (Monitoring Well - далее MW). В статье рассматриваются три типа DP-устройств для отбора проб грунтовых вод, работающих в заданный период времени, а именно: пробоотборник с герметично закрытым фильтром (Sealed-Screen Sampling - далее SSS); многоуровневый пробоотборник (Multi-Level Sampling - далее MLS); пробоотборник открытого типа (Open Hole Sampling - далее OHS). Рассмотрены принципы работы пробоотборников и особенности их устройства.
Construction and Geotechnics. 2018;9(2):20-29
views
ВЫБОР ОПТИМАЛЬНОГО ВАРИАНТА ЗАКРЕПЛЕНИЯ СКЛОНА, СЛОЖЕННОГО АРГИЛЛИТОПОДОБНЫМИ ГЛИНАМИ
Сычкина Е.Н., Тимшина А.А.

Аннотация

Рассмотрена проблема обеспечения устойчивости зданий и сооружений на склоновых территориях. Некорректная оценка устойчивости склона может привести к возникновению аварийной ситуации, которая в условиях плотной застройки может затронуть существующие здания, ранее находящиеся в устойчивом состоянии. В настоящее время для прогнозирования устойчивости склонов широко применяется метод конечных элементов, реализованный в различных программных комплексах. Целью исследования являлся выбор оптимального решения по обеспечению устойчивости склона, сложенного аргиллитоподобными глинами. Для достижения поставленной цели авторами были решены следующие задачи: выполнен обзор изученности вопроса обеспечения устойчивости склонов; произведен патентный поиск и выполнен анализ его результатов; произведен анализ архивных данных отчетов по исследуемому объекту, определены исходные данные для расчетов и численного моделирования в программном комплексе Plaxis 2D; по результатам первой серии численных экспериментов определены факторы, оказавшие существенное воздействие на формирование аварийной ситуации на объекте исследования; по результатам второй серии численных экспериментов выбрана оптимальная технология обеспечения устойчивости склона. В инженерно-геологическом строении территории г. Перми принимают участие аргиллитоподобные глины раннепермского возраста, несущая способность которых при водонасыщении снижается. Это может приводить к потере устойчивости склона, сложенного аргиллитоподобными глинами, что было подтверждено результатами первой серии численных экспериментов. В результате проведения второй серии численных экспериментов наиболее рациональным из рассмотренных методов обеспечения устойчивости склона был принят метод с использованием двух рядов из грунтоцементных свай, расположенных в разных частях склона.
Construction and Geotechnics. 2018;9(2):30-38
views
ПОЛИСИЛИКАТНОЕ СВЯЗУЮЩЕЕ ДЛЯ СИЛИКАТНЫХ КРАСОК
Логанина В.И., Кислицына С.Н., Мажитов Е.Б.

Аннотация

Приведены сведения о структуре и свойствах полисиликатного связующего, полученного смешиванием золя кремниевой кислоты с жидким стеклом. Установлено, что введение золя кремниевой кислоты в жидкое стекло способствует увеличению доли высокополимерных фракций кремнекислородных анионов. Повышение содержания золя способствует увеличению доли высокополимерных фракций кремнекислородных анионов. Приведены результаты кинетики изменения содержания кремнезема в мономерной форме в калиевом и натриевом полисиликатном растворе. Выявлено, что зависимость содержания кремнезема в мономерной форме на ранних стадиях взаимодействия золя кремниевой кислоты с жидким стеклом носит экстремальный характер. Показано, что при смешивании калиевого жидкого стекла с золем кремниевой кислоты образование кремнезема в мономерной форме на начальном этапе протекает медленнее по сравнению с натриевым жидким стеклом. Приведены результаты изучения структуры полисиликатных растворов методом нарушения полного внутреннего отражения. Методом ИК-спектроскопии выявлен сдвиг полосы, соответствующий колебаниям Si-О-Si, в область более высоких частот по сравнению с жидким стеклом, что свидетельствует о большей степени полимеризации кремнезема. Установлено наличие в составе полисиликатного связующего полимерных разновидностей кремнезема, что обеспечивает повышение стойкости силикатных покрытий. Приведены сведения о свойствах силикатного состава с применением полисиликатного пленкообразующего и покрытий на его основе. Состав предназначен для отделки наружных и внутренних стен зданий.
Construction and Geotechnics. 2018;9(2):39-45
views
МАТЕМАТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВОДОРАЗБОРНОЙ АРМАТУРЫ С ПЛОСКИМ ЗАПОРНЫМ ЭЛЕМЕНТОМ
Свинцов А.П.

Аннотация

Водоразборная арматура вентильного типа, оснащенная плоским запорным элементом, в эксплуатационных условиях работает практически без утечек воды. Для повышения регулирующей способности разработан запорный элемент с проходным отверстием в форме «изогнутой капли». Результаты исследований гидравлических характеристик истечения жидкости через отверстия различной формы, выполненных методами математического моделирования и физического эксперимента, представлены в научных публикациях российских и зарубежных специалистов. Однако закономерности истечения жидкости через проходное отверстие в форме «изогнутой капли» исследованы не в полной мере. Это сдерживает решение задач проектирования водоразборной арматуры вентильного типа с высокорегулирующей способностью. Разработана математическая модель, включающая описание проходного отверстия в форме «изогнутой капли» и определяющая численный эксперимент по определению гидравлических характеристик истечения жидкости. В рамках математического и физического экспериментов определены геометрические параметры проходного отверстия в форме «изогнутой капли», обеспечивающие изменение расхода воды пропорционально его открыванию. В процессе реализации физического эксперимента установлены гидравлические характеристики истечения жидкости через отверстие в форме «изогнутой капли»: коэффициент местного сопротивления ζ, коэффициент скорости φ, коэффициент сжатия ε, коэффициент расхода μ, расход воды q при различных давлениях. Экспериментально установлено, что вентильная головка, оснащенная запорным элементом с проходным отверстием в форме «изогнутой капли», характеризуется высокой регулирующей способностью. В диапазоне поворота рукояти от 30° до 180° при давлении 0,05 МПа расход воды изменяется в среднем на 1,2 % на 1° регулирования, а при давлении 0,3 МПа - на 1,4 % на 1° регулирования.
Construction and Geotechnics. 2018;9(2):46-58
views
ГРАДОСТРОИТЕЛЬНАЯ ОЦЕНКА ЯВЛЕНИЯ «ВТОРОЕ ЖИЛИЩЕ»
Зиятдинов З.З.

Аннотация

Раскрыты роль и значение экспансии второго жилища в современном градостроительстве. Показаны масштабы развития второго жилища в России и за рубежом. Приведены определения терминов «второе жилище» и «поселок вторых жилищ». Перечислены градостроительные тенденции развития второго жилища: постоянный рост численности вторых домохозяйств; расширение ареалов распространения второго жилища; увеличение средней длительности пребывания во вторых жилищах в течение года; рост числа и доли семей, имеющих во владении несколько вторых жилищ; распространение второго жилища в виде квартиры в городе; расширение с течением времени типологии второго жилища за счет появления его новых видов и форм. Выявлено влияния развития второго жилища на формирование архитектурно-планировочных структур градостроительных систем: развитие систем расселения посредством появления новых поселений сезонного характера - поселков вторых жилищ; развитие транспортной инфраструктуры за счет роста интенсивности автомобильных потоков от городов ко вторым домохозяйствам; изменение приоритетов среди компонентов рекреационных систем в связи с опережающими темпами развития второго жилища сравнительно с объектами коллективного размещения отдыхающих; переформатирование системы общественного обслуживания в связи с созданием сервиса по обеспечению удобств проживания во вторых жилищах; снижение степени компактности планировочной структуры городов из-за расположения в ней поселков вторых жилищ. Показано, что второе жилище приводит к изменению структурно-планировочных характеристик формирования городских и сельских поселений и систем расселения. Распространение второго жилища представляет собой масштабное, динамично-экспансивное, полиморфное, многоаспектное, экзистенциальное и естественно необходимое явление современной градостроительной практики.
Construction and Geotechnics. 2018;9(2):59-77
views
ИСПОЛЬЗОВАНИЕ ГЕОСИНТЕТИЧЕСКИХ ОБОЛОЧЕК В СТРОИТЕЛЬСТВЕ
Семёнов Д.А., Клевеко В.И.

Аннотация

Представлены результаты анализа применения геосинтетических оболочек в строительстве, в частности: при строительстве искусственных островов, плотин, подпорных стен, автомобильных дорог и железнодорожных путей, устройстве оснований фундаментов на слабых грунтах, а также обезвоживании донных отложений и других суспензий с последующим их использованием или захоронением. Описана технология строительства искусственных островов с помощью геооболочек, включающая в себя подготовку участка строительства, удаление острых предметов, установку защитного слоя, наполнение оболочек на специальных баржах при помощи землесосного снаряда и размещение их в необходимом месте, послойную укладку оболочек с заполнением пустот грунтом, покрытие образованной конструкции защитным слоем из геотекстиля и слоем каменной наброски с дальнейшим намывом грунта в пространство, образованное плотиной, проведением коммуникаций и строительством на поверхности искусственной суши. Приведены фрагмент кладки геооболочек при возведении дамбы вокруг будущей суши, отображающий возможность расположения геосинтетических оболочек в несколько рядов по горизонтали и вертикали для достижения необходимых параметров конструкции, и поперечное сечение защитного геотекстильного слоя с якорными трубами по краям, заполненными донными отложениями, и геооболочкой. Представлен порядок производства работ при сооружении плотин из геосинтетических оболочек. Выявлены преимущества обезвоживания и утилизации донных отложений и жидких отходов с помощью геосинтетических оболочек, заключающиеся в экологичности, экономичности по сравнению с аппаратными методами, малой численности персонала, небольшой продолжительности работ, высокой скорости закачки пульпы, комплексности технологических процессов и возможности дальнейшего использования оболочек. Приведена систематизированная технология обезвоживания отходов, снабженная подробными комментариями каждого шага и дополненная изображением поперечного сечения полигона с оболочкой. На основании проведенного патентного исследования выявлены и охарактеризованы перспективные направления использования геосинтетических оболочек.
Construction and Geotechnics. 2018;9(2):78-87
views
ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ РАЗВИТИЯ ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ В ГРУНТАХ
Безматерных А.В., Офрихтер В.Г.

Аннотация

В грунтах при приложении нагрузки, превышающей несущую способность основания, развиваются вертикальные деформации сжатия и горизонтальные деформации расширения, что приводит к аварийным ситуациям. Целью исследования являлось изучение напряженно-деформированного состояния образцов грунта в стадии развития пластических деформаций, непосредственно предшествующих разрушению. Испытания проводились на приборе трехосного сжатия в камере типа А. Исследовались образцы из песка, глины и песка, армированного полипропиленовым волокном. Образцы из армированного и неармированного песка формировались путем сухой послойной отсыпки. Образцы из глины формировались из глинистой пасты с заданными характеристиками влажности. Приводятся физические характеристики грунтов. Испытания проводились по консолидировано-дренированной схеме. Трехосные испытания проводились в кинематическом и статическом режимах, кинематические - с заданной скоростью деформирования, статические - ступенями по 50 кПа. Гидростатическое обжатие во всех испытания было принято 100 кПа. По результатам трехосных испытаний определены прочностные характеристики образцов. Образцы из глины и неармированного песка были доведены до разрушения. Разрушение образцов из фибропеска при относительной деформации 20 % не было достигнуто. Для образцов из глины и неармированного песка при непрерывном деформировании значение горизонтальной деформации и максимального вертикального давления меньше, чем при приложении ступенчатой нагрузки, а для песка, содержащего полипропиленовые волокна, эта зависимость обратная. Для фибропеска зависимость между интенсивностями касательных напряжений и деформаций сдвига близка к линейной функции. Определены углы дилатансии. Результаты экспериментальных исследований планируется использовать для численного моделирования.
Construction and Geotechnics. 2018;9(2):88-97
views
ПРОГНОЗИРОВАНИЕ РОВНОСТИ ПОКРЫТИЯ АВТОМОБИЛЬНЫХ ДОРОГ С УЧЕТОМ ПОГОДНО-КЛИМАТИЧЕСКОГО ВОЗДЕЙСТВИЯ И УРОВНЯ РАБОТ ПО СОДЕРЖАНИЮ
Скоробогатченко Д.А., Забазнов А.С.

Аннотация

Статья посвящена совершенствованию метода прогнозирования продольной ровности покрытия автомобильных дорог. Целью исследования являлось совершенствование методики прогнозирования индекса продольной ровности покрытия автомобильной дороги с учетом отрицательных погодно-климатических факторов, состава движения, а также уровня содержания. Авторами проведен широкий анализ и классификация отечественных и зарубежных методик прогнозирования изменения продольной ровности покрытия автомобильных дорог. Предложено повысить точность прогнозирования ровности покрытия на основе совершенствования известной линейной многофакторной модели, прогнозирующей изменение международного индекса ровности IRI (International Roughness Index) в зависимости от интенсивности движения и начального состояния покрытия, за счет включения в нее дополнительных факторов. В качестве факторов предлагается использовать данные о качественном составе транспортного потока, а именно - об уровне воздействия тяжелых грузовых автомобилей, уровне погодно-климатических воздействий на покрытие, а также уровне содержания автомобильных дорог. В качестве инструмента обработки данных предлагается многофакторный линейный регрессионный анализ в Deductor Studio. На основе статистических расчетов установлено, что введение в корреляционно-регрессионную модель указанных дополнительных факторов позволяет повысить точность прогнозирования международного индекса ровности (IRI) покрытия автомобильной дороги. Представлены результаты использования усовершенствованной модели на ряде автомобильных дорог Волгоградской области, позволяющие судить о статистической значимости полученной модели на основе увеличивающегося множественного коэффициента корреляции и снижающейся средней абсолютной ошибки при верификации результатов. Совершенствование прогнозирования изменения продольной ровности покрытия на стадии технико-экономических расчетов будет способствовать повышению объективности принятия решений при управлении транспортно-эксплуатационным состоянием автомобильных дорог.
Construction and Geotechnics. 2018;9(2):98-109
views
СПОСОБЫ СОЗДАНИЯ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ В ЭЛЕМЕНТАХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ С ИСПОЛЬЗОВАНИЕМ НЕВЗРЫВЧАТОЙ РАЗРУШАЮЩЕЙ СМЕСИ (НРС-1)
Мезенцева А.В., Бозшалова Л.Т., Белозерова Д.С.

Аннотация

Объектом исследования являются полые металлические элементы строительных конструкций, которые можно использовать, например, в качестве затяжек. Предварительное напряжение в таких трубчатых элементах возможно создавать с использованием НРС-1. Цель исследования - определение несущей способности трубчатых элементов, подверженных внутреннему давлению от НРС-1. Выполнено несколько экспериментов, выявляющих характер работы этих элементов, а именно - образцов испытания на растяжение и сжатие. Для изучения работы на растяжение и сжатие трубчатых элементов в строительных конструкциях проводились исследования одинаковых трубчатых элементов с заполнением различными материалами (НРС-1, цементно-песчаная смесь) и без заполнения. Анализ полученных результатов при испытании трубчатых металлических элементов на растяжение показывает, что по несущей способности трубчатые элементы примерно одинаковы, однако удлинение трубчатых образцов, заполненных НРС-1, при разрыве меньше, чем у остальных. Площадь диаграммы разрыва у образцов труб с заполнением меньше, чем у образца трубы без заполнения. Важным при усилении строительных конструкций является то, что образцы труб, заполненных НРС-1, имеют большую жесткость. Однако если нет усиления мест расположения продольных разрезов приваренными металлическими накладками, то такие образцы имеют меньшую несущую способность. Анализ полученных результатов при испытании трубчатых металлических элементов на сжатие показывает, что элемент, предварительно напряженный при помощи невзрывчатой разрушающей смеси, выдерживает большую предельную нагрузку, чем образец, заполненный цементно-песчаным раствором, и образец без заполнения. Таким образом, из металлических трубчатых элементов, предварительно напряженных при помощи НРС, можно изготавливать работающие на сжатие элементы строительных конструкций.
Construction and Geotechnics. 2018;9(2):110-116
views
МОДЕЛИРОВАНИЕ ПРОЦЕССА ТЕПЛООБМЕНА В ГРУНТАХ
Офрихтер Я.В., Захаров А.В., Лихачева Н.Н.

Аннотация

На сегодняшний день все большее распространение получают системы грунтовых теплообменников для отопления и охлаждения зданий. В России такие системы практически не используются. Это связано в основном с невысокой стоимостью энергоресурсов и отсутствием нормативной базы. Для расчета систем грунтовых теплообменников важно знать теплофизические свойства грунтового основания, в частности теплопроводность. Отечественных нормативов для определения таких характеристик в талых грунтах не существует. Актуальные иностранные методики расчета либо обладают низкой сходимостью с экспериментальными данными, либо разработаны для определенного вида грунтов. Кроме того, существующие методы в основном являются эмпирическими и не пытаются объяснить механизм теплообмена в грунтах. Отсюда возникает потребность в разработке более универсального метода для прогнозирования и оценки процессов теплообмена грунтового основания. В данной статье представлена новая модель для расчета теплопроводности грунтов и приведены основные положения для выведения аналитических формул. Представленная модель дает возможность учитывать плотность, влажность и температуру грунтового основания. Методика, описанная в работе, позволяет обойтись нетрудоемкими экспериментами для определения теплопроводности основания. Пошагово представлена методика аналитического расчета и приведены все необходимые формулы. Предложены два варианта использования метода: 1) менее точный, для предварительной оценки, без необходимости отбора дополнительных образов и проведения экспериментов; 2) более точный, с проведением как минимум одного эксперимента с образцом нарушенной или ненарушенной структуры. Приведены результаты сравнения расчетных значений теплопроводности с экспериментальными данными. Сделаны выводы о применимости модели.
Construction and Geotechnics. 2018;9(2):117-124
views
СОВЕРШЕНСТВОВАНИЕ МЕТОДА РАСЧЕТА ОСАДОК СВАЙНЫХ ФУНДАМЕНТОВ РЕЗЕРВУАРОВ С УЧЕТОМ ПОВТОРЯЕМОСТИ ИХ НАГРУЖЕНИЯ И РАЗГРУЗКИ
Шмидт О.А.

Аннотация

Объектом исследования являются железобетонные сваи и их совместная работа с грунтом в составе свайных фундаментов резервуаров. В результате анализа состояния вопроса о приращении осадок свайных фундаментов резервуаров установлено, что их значения в ходе повторяемости циклов нагружения-разгрузки могут значительно увеличиваться. При этом отмечаются случаи превышения предельно допустимых осадок и кренов свайных фундаментов уже после выполнения гидростатических испытаний и сдачи резервуаров в эксплуатацию. В опубликованных работах отмечается, что около 70 % аварий резервуаров связаны с неравномерными осадками свайных фундаментов. Существующие методы расчета осадок не учитывают их приращения в ходе циклов нагружения и разгрузки. Автором предлагается метод расчета осадок свайных фундаментов резервуаров, учитывающий особенности их эксплуатации. За основу принят метод послойного суммирования осадок основания для условного свайного фундамента. Расчет дополнительной осадки выполняется с использованием аппроксимирующей функции. При этом учитывается изменение отношения приведенного модуля деформации грунта в основании свай, полученного в ходе статических испытаний, к модулю упругости этого же грунта. Для расчета приведенного модуля деформации грунта использовался метод И.З. Гольдфельда (2011 г.). Разработанный автором метод расчета осадки был апробирован при проектировании свайного фундамента резервуара в Темрюкском районе (Краснодарский край). В процессе мониторинга технического состояния резервуара (Темрюкский район) была получена удовлетворительная сходимость результатов расчета его осадок с данными натурных наблюдений.
Construction and Geotechnics. 2018;9(2):125-133
views
СПОСОБЫ ИСПЫТАНИЙ СВАЙ В СУЩЕСТВУЮЩИХ ФУНДАМЕНТАХ ПЕРЕД РЕКОНСТРУКЦИЕЙ ЗДАНИЙ
Саенко Ю.В.

Аннотация

Приведено описание разработанных способов испытания свай в составе фундаментов существующих зданий. Первый способ испытаний позволяет сохранить сформировавшееся за время эксплуатации здания напряженно-деформируемое состояние вмещающего сваю массива грунта и тем самым повысить достоверность определения несущей способности. Это достигается тем, что со стороны противоположных углов поперечного сечения ствола сваи поочередно выполняют две прорези, в каждую из которых устанавливают домкраты, перерезают арматуру, размещенную в двух других углах поперечного сечения ствола, а отделение сваи от ростверка выполняют за счет растяжения оставшегося бетонного сечения ствола сваи при начале статического нагружения. В ходе испытаний предельное сопротивление сваи, испытанной по предложенному способу, оказалось от 5 до 7,1 % больше, чем для свай, испытанных по ГОСТ 5686-2012. Второй способ учитывает влияние смежных свай на испытуемую. Это достигается тем, что перед отделением сваи от ростверка на испытуемую и смежные сваи устанавливают приборы для измерения деформаций - экстензометры, с помощью которых в ходе испытания регистрируют изменение напряженного состояния стволов свай, благодаря чему оценивается наличие и величина влияния смежных свай на испытуемую. Кроме того, в ходе испытаний определяют фактическую нагрузку, действующую на испытуемую сваю в составе фундамента, что является необходимым условием разработки проекта реконструкции сооружения. Предложенные способы статических испытаний свай в фундаментах существующих зданий могут быть использованы при проведении обследования для разработки проектов по реконструкции и техническому перевооружению существующих зданий.
Construction and Geotechnics. 2018;9(2):134-141
views

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах