No 3 (2018)

Modelling the Stress-Strain State of Blades Affected by Plasma Arc for the Food Grinding Plant
Veremeichik A.I., Sazonov M.I., Hvisevich V.M.

Abstract

This article considers the efficiency of the food grinding plant and appropriate methods aimed at increasing its reliability and durability. It is established that a plant’s service life is limited by the service life of its knives. It is proposed to apply surface plasma nitriding with a compressed moving plasma arc to strengthen the knives. The use of such a highly concentrated heating source allows for surface hardening of a product, though only of its wear parts, including preliminary bulk hardening of its core and thereby maintaining materials’ plastic properties. This method of heat treatment allows to increase the resistance to wear and fatigue; to provide hardness and wear resistance of the surface; to reduce the deformation of the hardened parts due to the locality and short-term interaction of plasma with the metal surface. According to the results of the preliminary experimental studies on surface temperatures close to the melting temperature of steel, the temperature distribution law is established. Based on the Gaussian law of temperature distribution in the finite element computing system ANSYS, a theoretical model is developed to study the distribution of the temperature field in the knife in depth at different speeds of the heating source and currents in order to provide optimal parameters of the heat treatment process at a given depth of tempering, hardness, etc. Further, on the basis of these data, a theoretical experiment is conducted to study the stress-strain state of the knife under the influence of a moving heating source modelling the plasma jet. The mechanical and mathematical model developed by ANSYS takes into account the temperature change in the diameter of the moving heating spot and the dependence of the physical and mechanical characteristics of the knife’s material on temperature. A plasma torch and plasma system are developed, and surface plasma nitriding of knives subject to preliminary bulk hardening is performed. The wear resistance of the blades after an extensive surface hardening and plasma nitriding is investigated. The results of the research allowed to increase the wear resistance of knives subject to preliminary bulk hardening and surface plasma nitriding by more than 2 times compared to bulk hardening.
PNRPU Mechanics Bulletin. 2018;(3):5-16
views
A fracture locus for a 2 wt% aluminum-graphene metal matrix composite at 300 °C
Vichuzhanin D.I., Yolshina L.A., Smirnov A.S., Muradymov R.V.

Abstract

Deformation behavior of a 2 wt% aluminum-graphene metal matrix composite (MMC) at 300 °C is studied. The MMC under study is synthesized at the Institute of High-Temperature Electrochemistry, Ural Branch of RAS. Data on ultimate ductility of the MMC is obtained. The value of shear strain to fracture is used as the characteristic of ultimate ductility. The shear strain to fracture is the function of the stress triaxiality coefficient and the Lode-Nadai coefficient. Tensile tests of smooth cylindrical specimens, notched cylindrical specimens, tensile and compressive tests of bell-shaped specimens, and tests of thick-walled cups with thinned bottoms are used to study ultimate ductility. The fracture locus of the composite at 300 °C is identified by the results of the study. It has been determined that graphene increases the ductility of aluminum, even under conditions of prevailing tensile stresses. However, the influence of graphene is significantly dependent on the form of the stress state of the metal under deformation. The composite under conditions of tension of smooth cylindrical specimens manifests practically unlimited ductility. The specimens underwent plastic deformation till the moment of the physical separation of specimen parts in the fracture region, while the cross section of the specimen in the neck tended to zero. However, when thick-walled cups with thinned bottoms are tested, the influence of graphene on ductile properties of the MMC can be neglected. Under conditions of prevailing compressive stresses, the ductility of the MMC significantly increases for all the test types. The obtained fracture locus is compared with the fracture loci of commercially pure aluminum and the 1 wt% aluminum-graphene MMC. It has been determined that the ductility of the material increases with graphene content.
PNRPU Mechanics Bulletin. 2018;(3):17-26
views
A Thermodiffusion Problem of Hydrogenation of a Steel Shell Structure
Emel'yanov I.G., Mironov V.I.

Abstract

The processes of heat transfer and diffusion in metals are characterized by different physical periods. However they are described by structurally similar equations of mathematical physics. This fact is used in the paper to adapt the well-defined mathematical principles set for heat transfer to the purposes of solving the problems of hydrogen diffusion into metals. An approach is assumed which is based on the substitution of the heat transfer equation with an equivalent variable equation utilized to calculate parameters of complexly shaped bodies and boundary conditions of various types via the finite-element method. The necessity of utilizing the numerical methods used in the research is dictated by the main direction of the algorithm applied to the determination of the interrelated influence of hydrogen and mechanical stresses on the kinematics of deformation and fracture of structural elements. The calculation of the stress-strain state of actual structural elements is carried out by means of numerical methods only. An analytical solution of the problem of heat distribution in a rod is utilized to test software based on the finite-element method. The goal of the research is to develop an approach necessary to solve a related thermodiffusion problem of hydrogen saturation in a steel shell structure and to determine the law of hydrogen concentration distribution in the body of a shell depending on temperature and the hydrogen concentration at the boundaries. As an example, a problem of hydrogen penetration into the wall of a diffusion device is solved. The solution would allow one to evaluate changes in the mechanical properties of materials and the service life of a product. The approach proposed here has allowed us to determine the kinematics of the processes of heat transfer and hydrogen saturation in steel walls of a cylindrical section of the device. The applied importance of the results obtained is based on the fact that the temperature, pressure and concentration of hydrogen over the inner surface are in correspondence with the operational conditions.
PNRPU Mechanics Bulletin. 2018;(3):27-35
views
Experimental studies of the effect of steel damage on the patterns of surface waves propagation
Ilyahinsky A.V., Rodyushkin V.M.

Abstract

The issue of monitoring the process of damage accumulation by controlling the acoustic properties of a metal is considered. The aim of the work is to develop an ultrasonic technology that is applicable in production conditions to assess the technical condition of a metal before it is destroyed. The possibility of creating a "damage indicator" was investigated using a high-frequency elastic surface wave as a sensor. The ultrasonic sounding technology used in this work was focused on expanding the spectrum of the probing signal by making it possible to improve the accuracy of measurements. As a parameter characterizing the internal friction, the shape of the acoustic probing pulse is used and, alternatively, the time of passage of a fixed distance in the metal by the wave. Demonstration experiments were carried out on flat samples from pre-annealed steel grade St10. Cyclic tests were carried out using a universal test machine from Tinius OIlsen Ltd., model H100KU providing a load measurement error of 0.5%. The samples were subjected to 50 cycles of soft loading with a voltage amplitude in the cycle of 0.6; 0,7 and 0,8 of the conditional yield point at a constant rate of movement of the active grip of 5 mm/min. The inversion of the observed signal from the amplitude change in time to the amplitude distribution and obtaining (on the basis of this inversion of the parameters) a priori of the chosen statistical Dirichlet distribution model are at the heart of the technique aimed at analyzing the shape of the probing pulse. The change in the stress of loading in the cycle leads to a significant change in the parameter of self-organization of the shape of the probing signal, while there is no significant change in the propagation velocity of the surface wave for different loading regimes. The results demonstrate the possibility of characterizing the value of the elastic hysteresis, which is one of the measures of internal friction in solids by measuring the shape coefficient of the acoustic probe pulse of surface waves.
PNRPU Mechanics Bulletin. 2018;(3):36-43
views
FEATURES OF STRESS-STRAIN STATE OF THIN-WALLED CIRCULAR SINGLE-EDGE-NOTCH SPECIMEN UNDER ECCENTRIC TENSION
Konovalov A.V., Kozlov A.V., Konovalov D.A., Partin A.S.

Abstract

Features of deformation behavior and fracture resistance of a material of fuel element claddings are used to design and ensure their safe operation. To determine these features, JSC “Institute of Nuclear Materials” applies static eccentric tension tests of thin-walled circular specimens with a stress concentrator in the form of a single-edge-notch, which are cut from shell pipes. The tests were made in certain time intervals of fuel element cladding operation. The experiments show various dependences of the specimen loading force on the value of the test machine grip displacement. These dependences are influenced by the accumulated damage of a fuel element cladding. Loading curve behavior is explained by the test simulation. The paper presents the test scheme. We formulated the elastoplastic problem of stress-strain state simulation of a single-edge-notch circular specimen under eccentric tension. The plane strain state is considered. The finite element simulation is made using the specialized computer program for the considered type of tests. The program is developed in the Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences. The load is applied gradually in small increments of the test machine grip motion. At each load step, the simulation algorithm is based on the principle of virtual power. Constitutive equations developed by the authors for the elastoplastic medium with large plastic deformations are used. The simulation results of loading processes are shown for the specimens made from the austenitic steel ChS86hd. It appears that the curve describing the dependence of tensile force in the specimen on the test machine grip displacement consists of two straight line segments with a smooth transition. The first straight segment is notoriously more inclined to horizontal axis compared to the second one. The change of the accumulated plastic strain in the region of the specimen notch in different points of the loading curve was analyzed. The features of the specimen at different points of the loading curve were explained taking into account the formation and development of a macrocrack at the top of the specimen notch. Fields of stress state indicator distributions in the region of the specimen notch are shown.
PNRPU Mechanics Bulletin. 2018;(3):44-52
views
The density of deformation distribution in a plane of VT1-00 sample under uniaxial strain
Rekov A.M., Vichuzhanin D.I.

Abstract

The inhomogeneity of the plastic deformation field is a common property of all polycrystalline materials. Numerical indicators of deformation inhomogeneity are defined using various experimental methods. The grade grid method with grid sizes commensurable with the average size of the material grain is meant to be the classical one. This method allows obtaining full characteristics of the field inhomogeneity for mesodeformations (at the grain level and inside the individual grains of the material). The grid method is considerably laborious and has limitations in accuracy. Statistically reliable data require performing a large number of measurements. The coordinates of grid points are measured by a visual observation of the magnified image in a microscope eyepiece. The development of modern means of computer technology and digital video cameras with high resolution allows using more advanced experimental methods. This article based on the method of digital image correlation provides the technique for defining statistical parameters of the deformation field inhomogeneity in the surface layer of the sample under loading. On the basis of digital images correlation method we propose a technique aimed at identification of statistical parameters of the deformation field inhomogeneity in a surface layer of the sample. The tests were performed using uniaxial strain of plane VT1-00 titanium samples. It is a single-phase material (α- phase) with the hexagonal crystal grid. The metallographic studies of material structure of the sample have been performed. The average grain size is determined using the random linear intercept method. The grains are equiaxial. The sample material has annealing twins. There are fields of vectors for irreversible displacements, components of the tensor for elastic-plastic deformations in orthogonal directions about the axis of the sample and shear deformations in a plane of the sample that have been determined. The third component of linear deformations has been defined according to the material’s incompressibility. The deformation relief on a surface of the sample during the strain was used as reference targets. The main logarithmic elastic-plastic deformations, its intensity and random Nadai-Lode parameters characterizing the stress-strain state of individual sections of the sample’s surface have been calculated. Distribution densities of the specified parameters have been built up and correlation functions of deformation intensity have been obtained. The results of the study have been compared with the experimental data obtained by the grain grid method under uniaxial strain of titanium grade VТ1-0 samples, similar in chemical composition to titanium VT1-00. There are more impurities in titanium VТ1-0.
PNRPU Mechanics Bulletin. 2018;(3):53-60
views
Fatigue crack growth kinetic on steels under variable amplitude loading
Savkin A.N., Sunder R., Badikov K.A., Sedov A.A.

Abstract

The fatigue crack growth kinetics on samples from four types of steels under constant and variable amplitude cycling loading with different asymmetry ratio is studied. The loading parameters were chosen in such a way that the resulting fatigue crack growth rate curves fit onto the middle region of the fatigue crack growth diagram. Standard compact specimens with an edge crack were used for the tests. Loading was carried out on a modern servo-hydraulic test machine, which allows you to specify different laws of stroke movement, record all parameters. The readout of the crack opening displacement gauge was recalculated into the crack length by the compliance method using software supplied with the test equipment. The available methods aimed at predicting the fatigue crack growth life with a variable amplitude cyclic loading are not capable of taking into account the peculiarities of random loading. In this study, a new approach is proposed to estimate the fatigue crack growth life with a constant and variable amplitude loading with different loading parameters, taking into account the phenomenon of a "crack closing" and nature of random loading. The "crack closing" is taken into account by the introduction of an effective stress intensity factor (SIF) into the calculation, which, unlike the well-known SIF, is calculated using the closing factor. The nature of random loading is determined by the irregularity factor of the random loading block. Calculation of the fatigue crack growth life according to the proposed model and according to the known "cycle-by-cycle" calculation method. A comparison of the calculated data with the experimental ones showed similar results. At the same time, the proposed model aimed at calculating the fatigue crack growth supposes the presence of a small number of initial parameters and requires considerably less resources for calculation.
PNRPU Mechanics Bulletin. 2018;(3):61-70
views
Computational simulation of the damage accumulation processes in cracked solids by the user procedure UMAT of Simulia Abaqus
Stepanova L.V.

Abstract

The paper presents the experience of using the user subroutine UMAT for FEM package SIMULIA Abaqus/CAE for damage accumulation processes in the vicinity of the crack. A continuum damage mechanics model based on the constitutive relations of linear elastic isotropic materials with the incorporated damage tensor components is used to describe the material behavior. The material nonlinearity arising from the deformation process is modelled by introducing an anisotropic damage tensor of the second rank into the constitutive equation. The material model is described by means of user procedure UMAT of SIMULIA Abaqus. The finite element (FE) mechanical constitutive model is implemented in Abaqus/Standard via a UMAT routine. Numerical experiments for a large series of cracked specimens have been performed. Computed stress and damage tensor components were found. It is shown that they are not dependent on the FE mesh refinement. Distributions of the damage tensor components in the vicinity of the crack tip in cracked specimens of different configurations under mixed mode loading in a wide range of mixed mode loadings are found. The configurations of active damage accumulation process zone in the cracked specimens are obtained. It is shown that the damage accumulation process has a substantial influence on the stress-strain state in the vicinity of the crack tip and leads to a decrease of the stress concentration in cracked specimens.
PNRPU Mechanics Bulletin. 2018;(3):71-86
views
Interactions of Pipe Instabilities under Static Loading
Khakimov A.G.

Abstract

Hydroelastic systems can be characterized by a simultaneous manifestation of elastic and hydrodynamic instabilities and their interaction. Mutual effects of pipe bending, internal and external pressures, the action of compression force and fluid with a set density flowing along the pipe are under consideration. A thin elastic pipe is fixed on clamped sliding supports. In this case the supports do not hinder the flow of fluid travelling inside the pipe along its axis. Outside the pipe there is the fluid at rest. At the supports, the pipe bending and rotation angle are equal to zero. Assumptions are made regarding the incompressibility of the pipe midline and also the ideality and incompressibility of the fluids. The pipe is subjected to longitudinal compression. The smallness of inertial forces is conditioned by a relatively slow change of disturbances under slowly changing external effects (compressive forces in the pipe, hydrostatic forces, velocity of fluid motion in the pipe). External effects can be both independent and interconnected with each other. Here, the static mutual influence between those instabilities is called the instability interaction in the pipeline. We have obtained the linearized equation of the pipe bend and the critical value of the force that squeezes the pipe, which represents a generalization of the classical critical value for the static longitudinal compressive force acting on the pipe in the Euler problem due to the action of pressures inside and outside the pipe and the fluid motion inside the pipe. The investigation is focused on static instability interactions depending on the compression force in the pipe, internal and external pressures and fluid velocity. Given the large number of input parameters, it is possible to identify a great number of particular cases being important in their own right. Some of them are considered here. The domains of change for these parameters are determined by the occurrence of stabilization and destabilization of the rectilinear shape. Bending rigidity, tensile forces and external hydrostatic pressure stabilize the pipe. By contrast, compressive forces, internal hydrostatic pressure and fluid movement inside the pipe at any velocity have a destabilizing effect.
PNRPU Mechanics Bulletin. 2018;(3):87-94
views
Construction of a Representative Model Based on Computed Tomography
Kharin N.V., Vorobyev O.V., Berezhnoi D.V., Sachenkov O.A.

Abstract

The simulation of the stress-strain state of porous or multiphase media is an important task nowadays. The application of the mathematical model of continuum mechanics to such media will make it possible to extend the scope of the problems to be solved. The development of non-destructive methods of control, such as computed tomography, allows obtaining data on the structure of various heterogeneous materials. This task is especially important in the areas of clinical medicine and biology. The paper presents the method aimed at determining mechanical properties of a representative element using computed tomography. Based on the finite element method for a given region, a finite-element ensemble is constructed using the scanning data on a computer tomograph of a real sample. For the obtained sample, numerical experiments are performed in the kinematic formulation, after which the problem of the stress-strain state is solved. The stresses obtained as a result of the calculations are averaged and used to determine the components of the elastic constant tensor. Thus, the anisotropic properties of the representative element are determined. To determine the orthotropic properties of the representative element, a target function is introduced, the arguments of which are unknown directions of orthotropy. These unknown directions are determined from the condition of minimizing the objective function. The transformation of the rotation to an anisotropic matrix of elastic constants makes it possible to determine the components of the elastic constant tensor in the orthotropic axes. As an illustration of the technique, calculations of a porous sample are given in the paper, and the obtained results are evaluated. For the quantitative comparison, the invariant of the stress tensor is used. The obtained results illustrate not only a sufficient accuracy of describing the medium in terms of continuity, but also a discrepancy in the results in the case of large porosity.
PNRPU Mechanics Bulletin. 2018;(3):95-102
views
Review of experimental studies on structural superplasticity: internal structure evolution of material and deformation mechanisms
Sharifullina E.R., Shveykin A.I., Trusov P.V.

Abstract

A wide variety of metals and metal alloys can be transferred to a specific state in which materials are capable of extremely large (hundreds and thousands of percents) strains without fracture at relatively low (compared with normal plasticity) stresses. For that materials should be fine-grained (with an average grain size less than some critical size for a given class of alloys, usually less than 10 microns) and subject to deformation in a certain range of temperatures and strain rates. The property of materials to test anomalously large deformations under the specified conditions is classified as structural superplasticity and is widely used in manufacturing processes by formation methods various (in the first place - large-sized) products in many industries (aerospace, automotive and etc.). Mathematical modelling is the most effective “tool” in developing rational regimes of technological processes, which, in turn, requires the creation of constitutive models (constitutive relations) allowing to adequately describe the physics and mechanics of superplastic deformation processes. To date many dozens of constitutive relations of various classes (macrophenomenological, structural-mechanical, thermodynamic, physical) have been created. Identification and verification of such models is carried out on the basis of the experimental data which are obtained on macro-samples, as a rule. The extensive experimental material about features of structural superplasticity has been currently accumulated for various materials. In most cases the experiments are carried out on cylindrical specimens by using uniaxial tension on kinematic type machines. The proposed review pays special attention to the issue of the staged nature of “longitudinal stress - strain” dependence which is observed in experimental tests with a transition to the superplasticity regime. This review attempts to systematize data from experimental studies which can be useful to form a more complete picture of physical nature of structural superplasticity phenomenon in various materials and necessary changes in material structure for transition to this deformation regime. It considers the effect of initial temperature-velocity conditions, meso- and microstructure of materials on the form of curves. The analysis of the considered experimental data confirms that the grain-boundary sliding is a predominant mechanism of superplastic deformation, but other mechanisms and processes play an important role: intragranular dislocation sliding, grain-boundary diffusion and rotation of crystallite lattice, along with the dynamic recrystallization. The paper performs and analyzes factographic data and their descriptions about a possible action of the above mechanisms and processes, their influence on each deformation stage and effect on the change in stress-strain state and material structure.
PNRPU Mechanics Bulletin. 2018;(3):103-127
views
Finite element study of mixed mode loading of the cracked semicircular disc under bending
Stepanova L.V., Frolov K.V.

Abstract

Numerical and experimental works are performed on the mixed-mode I/II brittle fracture by two types of edge cracked semicircular bend specimens. The first type is edge cracked semi-circular bend (SBC) specimens with vertical and inclined notches. The second type of specimens is semi-circular samples in which the contribution of Mode I and Mode II components varies by changing the bottom loading support. In the test numerical program fracture tests were conducted at crack inclination angles of 0º, 10-45º, 49º, 50-80º. The stress intensity factors for Mode I and Mode II loading and T-stresses are obtained numerically in FEM package SIMULIA Abaqus/CAE. The results of FEM modeling are compared with the experimental results obtained by the photoelasticity method. The experimental approach based on the photoelasticity method allows us to observe the von Mises equivalent stress distribution in the whole specimen and confirm the FEM studies performed. The comparison shows that in the specimens the pure Mode II loading cannot be realized. Analysis of numerical studies and isochromatic fringe patterns allows us to conclude that in the semicircular disc the mixed mode loadings are realized for all angles from 0 to 85º. The pure Mode II or sliding fracture can not be created by so- called Mode II loading in disc-type specimens SCB, because there are opening displacements observed for all the specimens investigated numerically and experimentally.
PNRPU Mechanics Bulletin. 2018;(3):128-137
views
Application of speckle dynamics and Raman light scattering to study the fracture features of pipe steel at high-cycle fatigue
Vladimirov A.P., Ponosov Y.S.

Abstract

Despite a long history of research and a large number of publications, currently there are no methods for assessing and calculating the residual life of structural elements with their multi-cycle fatigue that would meet the requirements of engineering practice. In this regard, the role of physical methods to record the features of accumulation of local fatigue damage without stopping the operation or testing of various objects for fatigue increases. In the article two laser methods are used to study the origin of fatigue crack. Earlier, after testing for high-cycle fatigue of polished steel specimen with a Charpy notch, two zones of different sizes with different roughness were found near the notch. The first zone of 50´100 µm was located directly on the top of the notch. It consisted of inhomogeneities up to 10 µm in diameter and about 100 nm in height. In the center of the zone a macro-crack was discovered. The second zone with a diameter of 500-700 microns had a form of a hole (tie) with a depth of about 1 micron. Its center was located at a distance of 250-300 microns from the top of the notch. The aim of the work was to determine the formulation of inhomogeneities in a small zone and the sequence of the two zones’ occurrence. By using Raman microscopy, it is shown that the inhomogeneities are pieces of iron carbide. By the peculiarities of speckle image changes it is shown that the formation of two zones begins almost simultaneously. After the origination of a macro crack with a length of about 100 microns, a new plasticity zone at its top begins to form. Possible formation mechanisms of two zones are discussed. The disadvantages of the speckle method and the direction of further research are considered.
PNRPU Mechanics Bulletin. 2018;(3):138-146
views
On Evaluating the State of Steel Specimens using Dynamic Spectrograms of Acoustic Signals
Gubin V.V., Anikeev N.A., Dyachenko D.I.

Abstract

The main purpose of this work was to study the possibility of estimating the changes in properties of bearing steel during heat treatment by visualization using dynamic spectrograms (sonograms) that display changes in the spectral characteristics of acoustic signals within time. The changes of spectral characteristics of the point impact acoustic response in the steel specimens were studied depending on the microstructure changes generated in the specimens using heat treatment with various parameters. The analysis and comparison of acoustic response signals were performed using software spectrum analyzer. The informativeness of the applied technique aimed at estimating changes in the microstructure of steel as a result of heat treatment is shown. The analysis of dynamic spectrograms allowed revealing indicative spectral features, such as shifting in the resonant frequencies and change in the damping decrement. A clear dependence of the shift of the resonant frequencies and the damping decrement of the signal on the tempering temperature of the quenched ball-bearing steel specimens was found. After the tempered specimens were re-quenched, reverse changes in the resonant harmonics frequencies and the damping decrement were observed. Changes in the observed indicative spectral characteristics correspond to changes in hardness and microstructure of the steel. This technique can be used for development of nondestructive testing express methods to evaluate changes in the state of steel structural elements and perform quality control during heat treatment.
PNRPU Mechanics Bulletin. 2018;(3):147-155
views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies