№ 2 (2014)
- Год: 2014
- Статей: 10
- URL: https://ered.pstu.ru/index.php/mechanics/issue/view/29
- DOI: https://doi.org/10.15593/perm.mech/2014.2
Особенности деформирования и разрушения комбинированных полимерных труб при низких температурах
Аннотация
Двухслойные комбинированные конструкции в которых один слой, обладающий высокой прочностью и жестокостью, из металла, армированного композита или высокопрочного пластика является несущим, а другой из высокодеформативного полимера или эластомера обеспечивает герметичность, химическую и коррозионную защиту являются широко распространенными. Однако вследствие различия механических свойств и, в частности, КЛТР в слоях таких конструкций могут возникать значительные напряжения при перепадах температуры. Длительный характер воздействия таких нагрузок, наличие дефектов, сложное напряженное состояние, возникающее в слоях конструкций, а также существенная температурная зависимость физико-механических свойств полимеров, делают вопросы обеспечения длительной механической прочности и работоспособности таких конструкций весьма актуальными. Объектом исследований в настоящей работе являются комбинированные полимерные трубы, состоящие из двух основных слоев: термопласта (полиэтилена низкого давления) и армированного композита (стеклопластика). Целью исследований является выявление причин хрупкого разрушения слоя из термопласта (полиэтилена) при низких температурах. В работе приведены результаты экспериментальных лабораторных исследований образцов полиэтиленового слоя и натурных образцов труб на хладостойкость при температуре до -50 °С. Проведено сравнение с полученными ранее расчетными оценками технологических остаточных напряжений в данных трубах. Предложена схема испытаний для быстрой сравнительной оценки хрупкости полиэтилена в условиях сложного напряженного состояния при низких температурах. При испытаниях натурных образцов труб выявлены этапы технологического процесса, влияющие на хладостойкость конструкции комбинированных полимерных труб.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):5-28
Моделирование фильтрации жидкости через пластически деформируемую пористую среду в процессе экструзионного отжима
Аннотация
Модели течения жидкости через недеформируемые или упругодеформируемые пористые среды нашли широкое применение. Особенно стоит выделить решение задач подземной гидродинамики и нефтедобычи. Предложенная в работе гидродинамическая модель фильтрационного течения жидкости через пластически деформирующийся пористый скелет находит свое применение при исследовании процесса экструзионного отжима масла из семян рапса. В ходе этого процесса пористый скелет претерпевает значительные необратимые деформации, что требует иного подхода к описанию поведения материала. Исходный продукт в данной работе был представлен двухкомпонентной смесью, состоящей из пластически деформируемой пористой сжимаемой среды и равномерно распределенного в ней масла. Компоненты смеси предполагались не реагирующими между собой. В соответствии с распространенным в теории экструзионной обработки полимеров подходом задача была рассмотрена в обращенном движении, канал шнека был развернут на плоскость, а в качестве определяющего соотношения для составляющих смеси была использована модель вязкой жидкости. Дальнейшая постановка задачи была выполнена в рамках Эйлерова подхода к описанию движения в двумерной постановке для среднего сечения развернутого на плоскость канала шнека. Сформулированная в этой модели краевая задача основана на уравнениях баланса количества движения и сохранения массы каждой из составляющих смеси. Независимыми переменными поставленной краевой задачи являются: давление в смеси, давление в масле, скорости движения смеси и масла. Гипотеза пропорциональности скорости отжима давлению фильтрующейся жидкости позволяет получить приближенное аналитическое решение для постоянных коэффициентов фильтрации и сжимаемости среды.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):29-47
Оптимизация параметров слоистых плит при динамическом проникании жесткого индентора с учетом трения и ослабляющего эффекта свободных поверхностей
Аннотация
Проблема оптимального торможения жесткого ударника неоднородной преградой при ударе по нормали была впервые сформулирована в 1978 г. В опубликованных позднее работах на основе принципа максимума Понтрягина были получены критерии оптимальной структуры неоднородной преграды минимального погонного веса для ударника различной формы. В настоящее время задачи в подобной или несколько иной постановке изучаются различными исследователями, некоторые примеры приведены в данной работе. При средних скоростях удара малодеформируемых остроконечных бойков в пластичные преграды средней твердости реализуется вариант вязкого образования кратера. Для этих условий известна широко используемая эмпирическая зависимость сопротивления прониканию, справедливая при определенных ограничениях на скорости, толщину преграды, форму ударника, механические характеристики, что подтверждается многочисленными экспериментами, проводившимися в лаборатории В.А. Степанова в ЛФТИ (ныне Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург). В настоящей статье предпринимается попытка уточнить постановку задачи оптимизации для модернизированной эмпирической зависимости с учетом влияния свободных поверхностей преграды и трения на сопротивление прониканию, для решения которой применяется численный метод. Последовательное усложнение модели посредством включения в нее новых факторов помогает приблизиться к более реальному описанию процесса внедрения. Это позволяет глубже изучить проблему в рамках новой усовершенствованной модели. Решение задачи получено с помощью метода игольчатых вариаций. В одних случаях получено окончательное решение задачи и сформулированы критерии оптимальной структуры преграды, в других - аналитическое решение в конечном виде не получено, но представлены результаты численных экспериментов. Показано, что учет дополнительных эффектов теоретически может приводить к качественно новому типу решения по сравнению с ранее известными решениями. Приведен алгоритм определения оптимальной структуры преграды для задачи об ударе конуса с n материалами.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):48-75
Исследование влияния параметров напряженного состояния фрагментов разломных зон на особенности их механического отклика при сдвиговом деформировании
Аннотация
Работа посвящена теоретическому исследованию влияния ряда параметров напряженного состояния фрагментов залеченных разломных зон на особенности их механического отклика при сдвиговом деформировании в условиях неравноосного сжатия. Исследование проводилось на основе компьютерного моделирования методом подвижных клеточных автоматов. В качестве основного параметра напряженного состояния среды в работе использован безразмерный параметр - степень неравноосности сжатия, характеризующий отношение бокового и нормального напряжений в плоскости деформирования. Основной целью работы являлся анализ зависимостей сдвиговой прочности, величины предельной сдвиговой деформации и изменения объема фрагмента среды (дилатансии) от степени неравноосности сжатия на начальной стадии активизации фрагмента разломной зоны. Показано, что важным фактором, влияющим на условия, при которых происходит активизация залеченной разломной зоны, является степень неравноосности сжатия среды. При этом величина сдвиговых напряжений, действующих во фрагменте среды, а также соответствующие ей уровни предельной сдвиговой деформации и дилатансии, при которых возможна активизация разломной зоны, существенно зависят от динамики изменения и соотношения локальных значений некоторых инвариантов тензора напряжений. Среди них можно выделить такие характеристики напряженного состояния, как давление и интенсивность напряжений. Это связано с тем, что данные параметры определяют возможность функционирования в геологической среде одного из ключевых деформационных механизмов, который связан с формированием и эволюцией повреждений на границах раздела структурных элементов в блочной среде. В частности, снижение во фрагменте среды уровня давления при относительно низких уровнях интенсивности напряжений может приводить к увеличению его предельной сдвиговой деформации и дилатансии в момент начала активизации разломной зоны. В то же время значительное увеличение интенсивности напряжений при одновременном снижении давления может приводить к значительному снижению сдвиговой прочности геосреды.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):76-101
Математическое моделирование процесса стратифицированного течения расплавов полимеров в осесимметричной постановке
Аннотация
Данная статья посвящена определению наиболее рациональной геометрии кабельной головки, позволяющей эффективно распределять потоки расплавов полимеров в каналах; оценке стабильности границ раздела потоков материалов с различными физико-реологическими свойствами для технологических диапазонов режимов переработки; расчету и построению полей скоростей, давлений, температур внутри каналов кабельной головки; экспериментальному определению зависимостей толщин накладываемых слоев изоляции и полупроводящих материалов от линейной скорости протяжки жилы и расходов для каждого канала. При моделировании процессов использовалась кабельная головка для совместного наложения трех слоев полимерного покрытия (слой полупроводящего экрана по жиле, изоляция, внешний полупроводящий экран), применяемая в производстве современных электрических кабелей среднего и высокого напряжения. Для анализа процессов тепломассопереноса в условиях стратифицированного течения в каналах кабельной головки реальные физические процессы были заменены математической моделью, представляющей собой систему нелинейных дифференциальных уравнений, отражающих основные законы сохранения. Система была дополнена граничными условиями и физико-реологическими свойствами перерабатываемых материалов. С целью упрощения модели предложен ряд допущений, позволивших, в частности, перейти к осесимметричной постановке задачи. Для решения сформулированной математической модели был применен численный метод, а именно метод конечных элементов, программно реализованный посредством комплекса Ansys. На основе полученных результатов была разработана более эффективная геометрия кабельной головки, устраняющая эффекты завихрения потоков полимера; получены распределения скоростей, давлений и температур в каналах кабельной головки; представлены возможные перегревы материала внутри каналов; оценено влияние некоторых технологических параметров процесса наложения многослойной полимерной изоляции на толщины изолирующих слоев.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):102-124
Математическое моделирование процессов деформирования и накопления повреждений при циклических нагружениях
Аннотация
Для построения теории, адекватно описывающей эффекты циклических нагружений, вначале анализируется экспериментальная петля пластического гистерезиса нержавеющей стали SS304, и на ней выделяются три типа микронапряжений, отвечающих за смещение центра поверхности нагружения. Для каждого типа микронапряжений формулируются эволюционные уравнения и на их основе уравнения теории пластического течения при комбинированном упрочнении. Выделяются материальные функции, замыкающие теорию, формулируется базовый эксперимент и метод идентификации материальных функций. Вычисление работы микронапряжений различных типов на поле пластических деформаций при циклических нагружениях с различными размахами деформации вплоть до экспериментальных значений количества циклов до разрушения, показало, что работа микронапряжений второго типа является универсальной характеристикой материала. Этот результат позволил сформулировать кинетическое уравнение накопления повреждений, на основе которого были рассмотрены процессы нелинейного накопления повреждений. Для определения материальных функций, отвечающих за разрушение, сформулирован базовый эксперимент и метод идентификации. Приведены материальные функции для нержавеющей стали SS304. Исследованы процессы упругопластического деформирования нержавеющей стали SS304 при нестационарных жестких режимах циклического нагружения при блочном изменении амплитуды и средней деформации цикла. Рассматриваются также процессы мягкого нестационарного и несимметричного циклического нагружения (ratcheting) при блочном изменении амплитуды и среднего напряжения цикла. Результаты расчетов сопоставляются с результатами экспериментов. Расчетные исследования нелинейных процессов накопления повреждений и малоцикловой усталости нержавеющей стали SS304 проводятся при симметричном жестком циклическом нагружении как при постоянной амплитуде деформации, так и при блочном изменении амплитуды деформации. Результаты расчетов показывают, что с уменьшением размаха деформации нелинейность процесса накопления повреждений возрастает, а с увеличением размаха деформации процесс накопления повреждений стремится к линейному. Наблюдается существенное отклонение от правила линейного суммирования повреждений при удовлетворительном соответствии результатов расчетов и экспериментов. Новыми результатами работы являются: - выделение на основе анализа экспериментальной петли пластического гистерезиса микронапряжений трех типов, отвечающих за кинематическое упрочнение; - установление на основе анализа экспериментальных результатов универсальности работы микронапряжений второго типа при малоцикловой и многоцикловой усталости; - построение на основе эволюционных уравнений для трех типов микронапряжений теории пластического течения при комбинированном упрочнении и кинетических уравнений накопления повреждений; - формулировка процедуры идентификации материальных параметров и проведение верификации предлагаемого варианта теории.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):125-152
Сезонные изменения собственных частот колебаний здания на свайном фундаменте
Аннотация
Работа посвящена исследованию динамических характеристик зданий на свайном фундаменте, а именно исследованию вибрационных процессов в здании при естественных внешних «слабых» воздействиях (микросейсмические, ветровые и т.д.). В этом случае требуется специальная аппаратура, способная регистрировать такие динамические процессы. Ветровые или микросейсмические воздействия различных механизмов, например автомобилей, на здания продолжаются постоянно, поэтому есть возможность организовать непрерывное наблюдение или мониторинг. Одним из наиболее информативных динамических параметров, оценивающих состояние исследуемой системы, является собственная частота. Так, например, изменение спектра собственных частот может свидетельствовать об изменении жесткостных характеристик элементов здания за счет накопленных повреждений, а также об изменениях в грунте и его связи со свайным фундаментом. В работе на основе непрерывного мониторинга вибрационных характеристик анализируется спектр частот колебаний здания, определяются его собственные частоты, исследуются сезонные изменения собственных частот и проводится численное моделирование, позволяющее описывать эти сезонные изменения. На основе численного эксперимента по определению собственных частот в системе здание-свайный фундамент-грунт, в котором взаимодействие свайного фундамента с грунтом представлено в виде пружин, найдены низшие собственные частоты конструкции здания. Установлено, что сезонные изменения собственных частот конструкции здания связаны с промерзанием грунта, которое влияет на жесткостные свойства системы здание-свайный фундамент-грунт.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):153-167
Алгоритм численного решения нелинейной краевой задачи динамического деформирования тонкого стержня
Аннотация
В статье представлен алгоритм разработанной подпрограммы решения двухточечной краевой задачи для системы нелинейных дифференциальных уравнений первого порядка. Новый алгоритм ранее опубликованной подпрограммы KLPALG объединил в себе основные идеи подпрограммы BVPFD (DD14AD, PASVA3) и PASSIN, реализующей методику продолжения решения по параметру. Кроме того, приведены обобщенные результаты трудов авторов в задаче о нелинейном динамическом деформировании тонкого пространственного криволинейного стержня при расчете по его дифференциальной модели. Неизвестные функции, входящие в уравнения движения, разыскиваются в дискретных точках. По методам прямого интегрирования производные по времени выражаются через текущие координаты и найденные на предыдущих шагах по времени. Первая производная по координате заменяется конечной разностью, добавляются краевые условия. Полученная система нелинейных алгебраических уравнений решается с помощью метода Ньютона с контролем длины шага из условия сходимости. Матрица Якоби этой системы имеет блочную трехдиагональную структуру, которая поддается эффективному LU-разложению. Такая декомпозиция матрицы Якоби позволяет быстро решать соответствующие системы линейных алгебраических уравнений больших размеров. Если условие сходимости метода Ньютона дает слишком маленький шаг, тогда применяется техника продолжения решения по параметру (псевдодлина дуги). После того как решена основная система нелинейных уравнений, для уточнения узловых значений вычисляемых функций применяется так называемый метод отсроченной коррекции (deferred correction method). Этот метод позволяет вычесть из получаемого решения ошибку, внесенную аппроксимацией производной по методу конечных разностей на начальном этапе численного решения. Получаемое таким образом численное решение имеет назначенную точность. Такая методика реализована в виде подпрограммы KLPALG, алгоритм которой представлен в данной статье.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):168-199
Исследование механических свойств технического пластилина при квазистатическом и динамическом деформировании
Аннотация
В работе проведены экспериментальные исследования механических свойств технического пластилина, который представляет собой композитный материал, состоящий из матрицы (смесь парафина и масел) и порошкового наполнителя (тальк, глина, пигменты) при растяжении, сжатии, сдвиге и внедрении сферического индентора. При постоянной скорости деформирования (растяжение, сжатие) получены кривые «напряжение - деформация», характеризующиеся малым упругим участком, зоной протяженной текучести до деформаций 15-20 %. На основании экспериментальных данных получена степенная зависимость предела текучести от скорости деформирования в диапазоне 0,0004…80 c-1. Таким образом, деформирование технического пластилина может быть удовлетворительно описано упруго-вязкой моделью типа Нортона с последовательным соединением упругого и вязкого элементов. Технический пластилин при растяжении и сдвиге свыше 3-5 % деформации начинает интенсивно накапливать рассеянные микроповреждения, что не позволяет использовать сдвиговые испытания в качестве тестовых при определении предела текучести подобно известным методикам для металлов. Пределы текучести при сжатии и растяжении при одинаковых скоростях деформирования близки. При внедрении сферического индентора диаметром 43 мм в пластилиновый блок толщиной 75 мм получена линейная диаграмма «усилие - глубина внедрения» вплоть до глубины 3 мм, что позволило считать постоянной величину твердости пластилина при определенной скорости деформирования. Удалось получить также динамическую твердость как энергию падающего тела, деленную на объем отпечатка в пластилине. Статическое и динамическое индентирование представляет собой перспективный метод исследования пластических свойств материалов в силу своей простоты. Однако необходимо установить корреляционный коэффициент, связывающий значение твердости с пределом текучести. Для рассмотренного материала такой коэффициент составил 0,24 при отсутствии трения между телами.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):200-219
О НЕСИММЕТРИЧНЫХ МЕРАХ НАПРЯЖЕННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ И ЗАКОНЕ ГУКА
Аннотация
Закон Гука (конечно, в современном тензорном виде, включающем учет различных типов анизотропии материала, конечную или скоростную формулировку) весьма широко используется в механике деформируемого твердого тела, включая и физически и/или геометрически нелинейные проблемы. В последние десятилетия он применяется также в подавляющем большинстве многоуровневых моделей, ориентированных на описание неупругого деформирования моно- и поликристаллических материалов. Как правило, при этом закон Гука записывается с использованием симметричных мер напряженного и деформированного состояния, определенных в терминах актуальной, промежуточной (разгруженной) или отсчетной конфигурации. Для материала, упругого по Грину, из существования упругого потенциала естественно вытекает симметрия четырехвалентного тензора упругих свойств П по первой и второй паре индексов, П ijkl = П klij , однако симметрия тензора внутри первой и второй пар индексов следует только из принятого и укоренившегося в механике сплошных сред соглашения о симметрии тензоров напряжений и деформаций. Следует отметить, что в исходном законе Гука, записанном для случая одноосного нагружения, вопросы о симметрии свойств, естественно, не возникали. Указанное соглашение позволило, в частности, существенно сократить объем экспериментов, необходимый для установления компонент тензора упругих характеристик, что особенно важно при рассмотрении материалов с низкой или априори неизвестной симметрией. Симметрия тензора напряжений следует из закона сохранения момента количества движения при отсутствии распределенных объемных и поверхностных моментов. Пренебрежение распределенными поверхностными моментами основано на гипотезе о том, что две части тела действуют друг на друга распределенными силами, которые на каждой элементарной площадке могут быть приведены к вектору напряжений. Данная гипотеза, в свою очередь, основана на предположении об отсутствии корреляции распределенных поверхностных нагрузок на любой материальной площадке. Следует отметить, что В.Фойгт еще в 1887 г. предлагал отказаться от данного предположения и приводить распределенные воздействия одной части тела на другую на любой элементарной площадке к вектору напряжений и вектору распределенных моментов. Указанное предложение полностью согласуется с используемым в теоретической (классической) механике способом приведения произвольной системы сил к главному вектору и главному моменту. На примере задачи простого сдвига показано, что использование (симметричного) закона Гука порождает несоответствие напряженного состояния, определяемого из закона в его обычной формулировке, части (статических) граничных условий, устанавливаемых соотношениями Коши. Рассматривается вариант закона Гука, ориентированный на применение несимметричных мер напряжений и деформаций и тензора упругих свойств с сохранением симметрии только по парам индексов. В качестве меры напряжения используется несимметричный тензор напряжений Коши, меры скорости деформаций - градиент относительной скорости перемещений (скорости перемещений относительно жесткой подвижной системы координат, отвечающей за квазитвердое движение элементарного объема), для которых выполняется требование независимости от выбора системы отсчета. Предлагается вид тензора упругих свойств в законе Гука, ориентированного на использование несимметричных мер.
Вестник Пермского национального исследовательского политехнического университета. Механика. 2014;(2):220-239