Vol 8, No 4 (2017)

NUMERICAL MODELLING OF THE DYNAMIC IMPACT OF A CARGO VEHICLE ON A BUILDING FOUNDATION
Antipov V.V., Ofrikhter V.G., Ponomarev A.B., Shutova O.A.

Abstract

Moving transport is one of the main sources of technogenic vibration impact on nearby buildings and structures. But there is a problem when trying to take into account the impact of vehicles in various calculations. It is lack of rationing of the vibration impact of motor transport in Russia presently. Therefore, the study of the impact of vehicles on the foundations of buildings and structures is relevant. During the research, the goal was to build an adequate numerical model of the dynamic impact of a single vehicle on an existing building using data obtained by express methods of multichannel analysis of surface waves. The results of numerical modelling are compared with the data of field studies to verify the adequacy of the numerical model. In general, the results are close to full-scale values: the arrangement is not more than 14 % for the maximum vertical component of the acceleration and not more than 5 % for the maximum horizontal component for a cargo vehicle and a bus. Additional studies of calculation of the dimensions of wheel contact spot are required to obtain more accurate results of numerical modelling. The developed model is adequate for a single vehicle of large mass.
Construction and Geotechnics. 2017;8(4):5-14
views
PROTECTIVE PILE CONSTRUCTIONS OF TRESTLE SUPPORTS “STREAMLINED” BY SOIL OF LANDSLIDES
Matsii S.I., Leier D.V., Riabukhin A.K.

Abstract

Landslide processes are widespread in the highlands. Activation of landslides leads to significant annual losses, threatens the safe operation of buildings and structures, the health and lives of people, violates transport links between cities. However, in preparation for the Olympic Games in the city of Sochi, there was a need for the construction of roads and railways on landslide slopes in the overpass. Measures of active protection of the foundations of trestle supports (linear structures completely overlapping a landslide) in this situation are not rational and economically unjustified. In this connection, the possibility of constructing local structures redirecting the displacement vector of soils and not completely stabilizing the slope (“streamlined”) is considered. To develop effective and reliable protective structures, a study was made of the interaction of separately standing “streamlined” structures on the pile foundation with clayey lands of landslides. In the course of the work, the areas of development of plastic deformations of the soil massif up to the destruction of the soil structure. The study was carried out both for linear “streamlined” structures, and for structures located “with a wedge” (at an angle). The dependencies of the limiting flow pressure on the strength characteristics of the soil and the diameter of the piles are obtained, and also the pressures per each pile in the row are determined. Based on the results of the studies, a calculation methodology and recommendations for the design of protective pile structures, which are “streamlined” by clayey soils of landslides, have been developed. The obtained results were used in the construction of critical facilities of the Krasnodar territory, and were also reflected in the branch road documents ODM 218.2.033-2013 and ODM 218.2.050-2015.
Construction and Geotechnics. 2017;8(4):15-24
views
FORMATION PROBLEMS OF GROUTING SOIL USING JET TECHNOLOGY FOR RECONSTRUCTION AND CONSTRUCTION
Bogov S.G.

Abstract

In the foundations of the foundations of buildings in the historical part of St. Petersburg, as well as in a large number of cities in the north-west of our country, there are soft water-saturated siltyclay soils, and there are inclusions of peat with different degrees of decomposition. With the development of such a metropolis as the city of St. Petersburg, there is an urgent need for a controlled transformation of the properties of weak base soils and giving them the necessary properties: increasing the strength and modulus of deformation, reducing water permeability. Fixing soils by jet carburizing is a technological process that involves a whole complex of special works to create a geomass with the necessary properties. They include the following basic operations: Lead drilling of wells with washing of drill cuttings with water or mortar, mixing of the foundation soil of the site, usually with cement mortars with chemical additives, then reinforcement of the well. Injection technology has been used in St. Petersburg since the mid 90s of the 20th century, first one-component, and then two-component. When using one-component technology of soil stabilization, a jet of cement mortar is used, and with a two-component jet of a solution in the ground, it is fed under the protection of a coaxial jet of air. Obviously, with the use of this technology of soil consolidation, the range of application of cementation of soils of various granulometric composition to clays and biogenic soils has expanded. In connection with the optimization of the cost of works of the “zero” cycle, using the practice of import substitution of materials and technologies, the application of jet technology is now becoming even more urgent for its active use in underground construction.
Construction and Geotechnics. 2017;8(4):25-34
views
STUDYING THE PILE-GRAVITY STRUCTURE OF A MOTORWAY UNDER DEGRADATION OF A FROZEN FOUNDATION SOIL
Kudriavtsev S.A., Val`tseva T.I., Mut A.D., Kovshun V.S.

Abstract

In this article, one of such decisions is considered on the example of a section of the “Amur” route Chita - Khabarovsk, in the base of which there is a degrading permafrost and deformations of the soil body together with the existing structure - the roadbed of the road section. The proposed method implies the joint operation of a holding pile-gravity structure and a geocomposite grillage from an integral geogrid. Despite the widespread use of such structures during construction on disperse soils [1, 2], the work of such on frozen soils remains poorly understood. For the possibility of evaluating and comparing strength and deformability indicators, computational and theoretical studies have been performed both for the existing structures of the road and the state of the foundation, and for designed structures. In order to achieve the goals set in the technical task, the geotechnical software complexes FEMmodels, Termoground and Plaxis V82D were used. They are able to simulate the work of the facilities in its stress-strain state, the thermodynamic processes in the annual freeze-thaw cycle and evaluation stability of soil bodies and structures. To describe the construction work on weak thawing substrates, an elastoplastic model with a limiting surface, described by the Coulomb-Mora criterion, was used. The choice of this model was due to the fact that its parameters can be taken from existing materials of standard engineering and geological surveys. In this formulation, numerical calculations are in good agreement with the traditional engineering methods for calculating the sediment and allow us to describe with sufficient accuracy the deformation of structures on weak thawing grounds. The performed analysis of the proposed solution showed high efficiency and operational reliability of soil structures developed using the properties of modern geosynthetic materials in combination with traditional materials and production technologies.
Construction and Geotechnics. 2017;8(4):35-42
views
DETERMINATION OF THE FILTRATION COEFFICIENT OF CLAY SOIL USING CONE PENETRATION TEST WITH MEASUREMENT OF PORE PRESSURE
Ponomarev A.B., Bezgodov M.A.

Abstract

In the Russian practice of engineering surveys, traditional methods of research are used, including field testing of soils with the selection of samples and their subsequent study in laboratory conditions. Performing surveys using these methods is a labor-intensive and long-term process that requires considerable material costs. Therefore, there is a need to apply express methods. One of the most common express methods is the method of cone penetration test (CPT). In Russia, CPT is most often used only as a duplicating method, since it is difficult to obtain accurate data in interpreting the results, which is associated with old equipment for engineering surveys. Therefore, in practice, sounding is most often used to determine the bedding, determine the bearing capacity of piles and to determine the strength characteristics of soils with high reliability. At present, electric cones with pore pressure sensors have found wide application in foreign practice. These cones make it possible to increase the accuracy, determine the soil type and evaluate the soil filtration parameters from the dissipation test data. In the article the authors will consider the application of the cone penetration test with the measurement of pore pressure to find the filtration coefficient of clay soil. The results of trough and field tests on immersing the cone in clay soil are presented. On the basis of the experimental data, a numerical model of probe immersion has been developed and a sequence of its calibration is presented with the aim of finding the soil filtration coefficient.
Construction and Geotechnics. 2017;8(4):43-53
views
EFFECTIVE METHOD OF DETERMINING THE PARAMETERS OF THE NON-LINEAR SOIL MODEL FROM IN-SITU TEST DATA
Alekhin A.N., Alekhin A.A.

Abstract

Evident and essential non-linearity of soil deformation, as well as complex natural genesis of soil massifs, which results in non-reproducibility of the natural stress state of soils in the laboratory conditions, require the development of methods for determining the parameters of the non-linear deformation of soils from in-situ test data. In this case, in a view of the complexity of the determining mechanical relationships of soils and statistical spread of values measured in the test, the problem is reduced to the solution of the so-called inverse ill-posed problem characterized by the instability of the solution. Such problems require the use of regularization method, taking into account specific features of the problem, adopting of which makes it possible to create a stable procedure for obtaining correct solution. The article discusses the features of deformation of soils, as well as the existence and the uniqueness of the solution of the problem of determining the parameters of the phenomenological non-linear soil model of Botkin from in-situ test data. Some results characterizing the proposed method are presented, convenient devices and software for implementing the method are recommended. One of the most effective methods of in-situ tests using two-dimensional non-linear problem for data analysis is the pressuremeter method, characterized by wide range of applications in various geological conditions. In this case also, to the contrast of linear models, such subjective moments in analyses of results, as the assignment of linear part of the deformation curve and the use of the tabulated Poisson coefficient are excluded. Described in the article general way, actually consisting in separate determination of nonlinear model parameters, can be applied for the development of similar methods in the case of other, more complicated models.
Construction and Geotechnics. 2017;8(4):54-63
views
CALCULATION AND DESIGN OF REINFORCING SLAB FOUNDATIONS WITH SOIL-CEMENT PILES
Gotman N.Z., Safiullin M.N.

Abstract

At present, there is a need to develop a methodology for calculating the reinforcement of slab foundation by piles. The need for reinforcement arises when adding of additional floors of a building under construction or reconstruction of an existing one. The use of soil-cement piles has certain advantages.In addition to the small and stable projected lead times, reinforcement with piles can be carried out in limited basements due to compact equipment. In the normative documents there are no recommendations on such calculations.When calculating the reinforcement of the slab foundation with ground-cement piles, the load is determined at the operational stage, which is compared with the permissible load on the pile (by the ground and by the material). Simulation of such staged processes by modern software is possible, however, rather laborious. Practical methods of reinforcing foundations with piles do not take into account many important factors: in what stress-strain state is the foundation and structure of the structure, at what moment of construction is the strengthening, etc. An important role is played by the features of the structure and the foundation: the thickness of the foundation slab, the number of storeys, and the physical and mechanical properties of the soils. Parameters of soil-cement piles also have a significant influence: space, length, diameter. The reinforcement of the slab foundation with soil-cement piles can be carried out in two schemes: with uniform placement of piles over the area of the slab and with local arrangement around the supporting structures (walls and columns). The article presents the results of numerical studies of the interaction of the slab foundation with ground-cement reinforcement piles. A local arrangement of reinforcement piles near the main supporting structures-columns and walls-has been adopted. Certain regularities in the load variation on the pile are obtained depending on the thickness of the foundation slab, the diameter of the piles, the length of the piles, and the time at which the reinforcement is performed.Based on the results obtained, a technique for designing the reinforcement of a plate foundation with piles is proposed. This takes into account the loads perceived by the base of the plate before the amplification is performed. The proposed methodology was used in designing the reinforcement of the slab foundation of a 13-storey residential building, for which the construction of three additional floors was planned.
Construction and Geotechnics. 2017;8(4):64-73
views
DEVELOPMENT OF WORK EXECUTION DESIGN FOR CONSTRUCTION OF PILE FOUNDATIONS IN CONSTRAINED CITY CONDITIONS
Gaido A.N.

Abstract

In the article, a technique for determination of technological parameters of the arrangement of pile foundations in a constrained urban environment upon the development of work execution designs (WED) is considered. Taking into account work experience in the development of technological documentation, an analysis of the existing regulatory documents was carried out, which made it possible to set basic requirements for the applied methods. In the course of works in such conditions, it is necessary to ensure safety for the surrounding development and high performance characteristics upon availability of various obstacles at construction sites. A feasibility study of operating practices is proposed to be performed on the basis of the preliminary analysis of indices determining constraints of the construction site, i.e. a set of various obstacles existing at the work area and adjacent territories restricting the implementation of technological parameters of methods, which prevent the equipment delivery to the facility, placement of the auxiliary equipment, etc. It is also necessary to distinguish between internal (existing obstacles to placement of storage areas, vehicle movement, etc.) and external constraints (limitation of work area overall dimensions, availability of preserved buildings, green areas, engineering communications within the site). Taking into account these prerequisites, methodical approaches to the selection of mechanization sets which implement various modern methods, as well as technological parameters in dependence on overall dimensions of used construction machines, required areas for their placement, with account for location of storage areas, areas for auxiliary equipment, etc., are presented. Technological diagrams of implementing rational methods of works in direct adjoining contact to structures of existing buildings are shown. In conclusion, a technical and economic assessment of modern methods of foundation arrangement is provided.
Construction and Geotechnics. 2017;8(4):74-85
views
ASSESSMENT OF THE MUTUAL INFLUENCE OF ENERGY PILES
Zakharov A.V., Bakieva I.D.

Abstract

The article presents the results of a study of the mutual influence of the work of two energy-efficient piles as ground heat exchangers. Energy-efficient piles differ from other types of energy-efficient foundations that work as separate heat exchangers as part of a single foundation, influencing each other. This fact should be taken into account when calculating the work of piles as part of an energy efficient pile foundation. In the course of the study, the value of the decrease in the heat flux density through the surface of the constant piles with soil was estimated when operating as ground heat exchangers. The study was carried out by performing a series of numerical calculations. The main factors that were varied during the calculations were the diameter of the piles and the distance between them. Numerical calculations were carried out in the TEMP module of the GeoStudio software package. A numerical model has been created to carry out the calculations: the geometric dimensions of the model, the initial and boundary conditions, the minimum necessary for a long numerical simulation have been determined. The initial and boundary conditions for modeling were adopted for the climatic conditions and temperature conditions of the Perm soil. The studies were carried out during the operation of energy-efficient piles in clay soil. The results of numerical simulation were processed using mathematical statistics. As a result, the dependence of the heat flux through the surface of the constant piles with the soil is obtained when they work as ground heat exchangers from the diameter of the piles and the distance between them. Graphically, the dependence is presented as a nomogram. An analysis of the obtained dependence made it possible to draw the following conclusions: the magnitude of the drop in the density of the heat flux decreases with increasing distance between the piles; The magnitude of the drop in the density of the heat flux increases: at small distances between the piles, with a decrease in the diameter of the piles, at large - with increasing.
Construction and Geotechnics. 2017;8(4):86-94
views
EXPERIMENTAL AND THEORETICAL VERIFICATION OF THE QUALIFIED METHOD BASED ON LAYER-BY-LAYER SUMMATION TO CALCULATE SETTLEMENTS IN SHALLOW FOUNDATIONS
Pronozin I.A., Chikishev V.M., Rachkov D.V.

Abstract

Calculation of settlement is challenging when designing shallow foundations (SF), since the absolute settlement and the resultant unevenness of settlements are the specified values. The domestic and foreign methods for evaluating deformations in soil body show that the calculated final settlement sometimes differs several times from the actual one. A number of subjective and objective factors and primarily, the foundation model and soil compressibility characteristics affect the final settlement. The authors propose a qualified method based on layer-by-layer summation for calculating settlements in shallow foundations. The proposed method takes into account the diagram split into components due to the additional external load acting on the soil bed; this results in elastic and elastic-plastic deformations and the changed overall deformation modulus E of soil layers due to the stress state. In order to test the proposed method, the authors conducted in-situ tests of statically loaded soils with rigid stamps followed by a comparative analysis. To study the effect of lateral compression on soil body deformation, the soils were tested in stabilometers. Depending on the horizontal stresses, the values of deformation modulus for additional pressure in various ranges were obtained. Calculation of settlement by the proposed method agrees with the experimental results and adequately shows deformation of soil body, both loaded and unloaded. The qualified method for calculating settlements makes it possible to: - take into account the diagram split into components due to the additional external load acting on the soil bed; this results in elastic and elastic-plastic deformations; - use the characteristics of deformation obtained after triaxial compression indicators (stabilometers), i.e. the effect of the changed deformation modulus E as the horizontal stress function is taken into account; this allows considering the values adapted to specific conditions, e.g. after the value of over-consolidation ratio (OCR), structural strength р str and specific soil properties; - take into account the elastic-plastic nature of soil; in here, the calculated diagram of absolute and relative settlements of layers across the overall depth of the compressible thickness illustrates the real deformation of soil bed, i.e. “physicality” of the method is shown.
Construction and Geotechnics. 2017;8(4):95-103
views
ACCOUNTING OF ANISOTROPY OF SOILS IN DETERMINING STRESSES IN FOUNDATION BASEMENT FROM NEAR LOADED AREAS
Nuzhdin L.V., Pavliuk K.V.

Abstract

The article analyzes the effect of deformation anisotropy on the stress-strain state of the soil basement on the basis of a numerical experiment using the ANSYS software package. Strain properties of environment are determined by strain module Е and Poisson's ratio µ. Degree of stress-strain anisotropy was evaluated based on ratio of deformation modules in vertical Ez and horizontal Ex directions ka = Ez / Ex . Resulting from calculation experiments, transverse-isotropic environments were concerned with coefficients of stress-strain anisotropy ka = 0.5; 0.75; 1.33 and 2 and additional coefficients α ' are obtained, which are used in determining vertical stresses from the additional load. Based of obtained results a method is proposed for calculating the additional stresses of the anisotropic basement of the foundations of the existing building from the buildings and structures being erected. The calculation is based on the Lyave problem using the scheme of a linearly deformed medium. The anisotropic properties are taken into account by introducing an additional coefficient α ' , which depends on the degree of anisotropy of the soil basement ka and the geometric dimensions of the foundation. The obtained results of the studies show that taking into account the anisotropic properties of soils has a significant effect on the stress-strain state of the soil basement and allows the most reasonable approach to predicting the settlements of foundations. It is particularly important to consider deformation anisotropy when design of reinforced soil basement with the creation of induced anisotropy, including construction new facilities near existing building.
Construction and Geotechnics. 2017;8(4):104-115
views
SOIL BASES IMPROVEMENT BY USING DEEP SOIL MIXING TECHNOLOGY
Zekhniev F.F., Vnukov D.A., Korpach A.I.

Abstract

Basing on the analyses of international experience in the article technology of soil bases improving by deep soil mixing (DSM) method is described. Variants of technology using in different soil conditions are provided, common types of equipment for works execution are pointed. The main design preconditions for the design of the improved bases and the features of the justification for the design solution are presented, taking into account requirements of Russian regulatory documents and available international experience in design of works by deep soil mixing technology. Three basic approaches are proposed as a calculation basis: within the framework of the existing SP for the averaged deformation module or the design scheme of the pile foundation; using the cell method, including a soil cement element and the surrounding soil; using of 3D finite-element software systems. In addition to the current building standards, it is proposed to use the organization standard as a tool for implementation of deep mixing technology into the practice of foundation engineering. The article gives the main parameters to be controlled during the production process, as well as the characteristics of the transformed soil, which are subject to verification at the construction site. The design and technological aspects of the application of deep soil mixing are shown on a specific example of foundations of the building design on the artificial base, the design and technological advantages of DSM technology at the pointed construction site are highlighted. Based on the technical and economic comparison of options, the savings are indicated through the use of mixing technology in relation to the other two design solutions. Conclusions in the article indicate a further promising development of this method with the formulation of the main goal for following scientific and practical work.
Construction and Geotechnics. 2017;8(4):116-125
views
USE OF GEOSYNTHETIC CLAY LINERS FOR POLLUTANT CONTROL
Manassero M., Dominijanni A., Guarena N.

Abstract

The osmotic, hydraulic and self-healing efficiency of bentonite based barriers (e.g. geosynthetic clay liners) for containment of polluting solutes are governed both by the chemico-physical intrinsic parameters of the bentonite, i.e. the solid density (ρ sk ), the total specific surface ( S ), and the total fixed negative electric surface charge (σ), and by the chemico-mechanical state parameters able to quantify the solid skeleton density and fabric, i.e. the total ( e ) and nano ( en ) void ratio, the average number of platelets per tactoid ( Nl,AV ), the effective electric fixed-charge concentration and the Stern fraction ( fStern ). In turn, looking at saturated active clays only, the state parameters seem to be controlled by the effective stress history ( SH ), ionic valence ( νi ) and related exposure sequence of salt concentrations in the pore solution ( cs ). A theoretical framework, able to describe chemical, hydraulic and mechanical behaviours of bentonites in the case of one-dimensional strain and flow fields, has been set up. In particular, the relationships, linking the aforementioned state and intrinsic parameters of a given bentonite with its hydraulic conductivity ( k ), effective diffusion coefficient osmotic coefficient (w) and swelling pressure ( usw ) under different stress-histories and solute concentration sequences, are presented. The proposed theoretical hydro-chemico-mechanical framework has been validated by comparison of its predictions with some of the available experimental results on bentonites (i.e. hydraulic conductivity tests, swelling pressure tests and osmotic efficiency tests).
Construction and Geotechnics. 2017;8(4):126-140
views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies